
RADC T-43-174, Vol 11 (of two)
mFinal Technical epert

July 196w

:M,

SOFTWARE INTEROPERABILITY AND
REUSABILITY Guidebook for Software
Guality Measurement

Boeing Aerospace Company ADA 1 3 847 8

P. Edward Preson, Juitlen Tsal. Thomas P. Bowen, Jonathan V. Post
and Robhrt Schmldt

APPRVE FOR M!ILIC RELEAS, DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441

84
0 0

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasuable to the general public, including foreign nations.

RADC-TR-83-174, Vol II (of two) has been reviewed and is approved for
publication.

APPROVED: ~ t ~/ ~($~~

JOSEPH P. CAVANO
Project Engineer

APPROVED:

RONALD S. '~APOSO
Acting Chief, Command and Control Division

FOR THE COlMMD)ER:

JOHN P, HUSS
Acting Chief, Plans Office

i

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC () Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

-.= -_-.m: ---.-. -•,-. ;7 -2-7 -2--;•Iii- •..... .

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Wnhat! %ieenteredl

REPORT DCUMENTATaION PAIGE ,READ INSTRUCTIONS
REPORT DOCUMENTATIO PAGE BEFORE COMPLETING FORM

I. REPORF NUItER GOOVT ACCESSION NO 1. RECIPIENT*S CATALOG NUMBER

RADZ-TR-83-174, Vol It (of two) 1,Is'-/- Y" 4 .TITL E[(ondSub itile) S. TYPE OF REPORT & PERIOD COVERED(iubt Final Technical Report

SOFTWARE INTEROPERABILITY AND REUSABILITY Aug 80 - Feb 83
a. PERFORMIMO OW(REPORT NUMBER

____ ___ ____ ___ ___ ____ __ ____ ___ ___ N/A
7. AUTHOR(*) 4. CONTRACT ORWGRANT NUM[ER(s)

P. Edward Presson Jonathan V. Post
Juitien Tsai Robert Schmidt F30602-80-C-0265
Thomas P. Bowen
S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA a WORK UNIT NUMBERS
Boeing Aerospace Company 62702F
PO Box 3999
Seattle WA Q8124 55_12019
I I. CONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE

Rome Air Development Center (COEE) 13,UMy 19831I1, NUMSER 01F PAGES

Griffiss AFB NY 13441 280
14. MONITORING AGENCY NAME & AOORESS(10 ditfirnt frmm Controlling Office) IS. SECURITY CLASS, (of this report)

UNCLASSIFIED
Same IS,. DECLA$SSIFICATION, DOWNGRADING

SCHEDULE

I6. DISTRIBUTION STATEMENT (of this RPort)

Approved for public release; distribution unlimited

17. DISTRIPUJTION STATEMENT (of the abstract entered In Btock 20, It ¢llferort ftrad epo")

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Joseph P. Cavano (COEE)

IS. KEY WORDS (Continue on reverse side If neceessy and Identify by block nimber)

Software Quality Software Reusability
Software Metrics Software Survivability
Software Measurement Software Expandability
Software Interoperability

20. "a TRACT (Continue ar reve•se sidG it n-ce..somy d Identify by block ns- r,)

Software metrics (or measurements) which predict software quality were
extended from previous research to include two additional quality factors:
interoperability and reusability. Aspects of requirements, design, and
source language programs which could 'affect these two quality factors were
identified and metrics to measure them were defined. These aspects were
identified by theoretical analysis, literature search, interviews with
project managers and software engineers, and personal experience. (over)
DD I 'R 1473 EDITION OP I NO. 6515 ^1,,SOLUTEN SJAW ? UNCLASSIFIED

SECURITY CLASSIFICATION OF T15N PAGl (WWZh Delt krite.re)

.......................

UNCLASSIFIED
SECURITY CLASUIVICATION OF THIb PAGC(Whae Dte. Ente;rd)

A Guidebook for Software Quality Measurement was produced to assist in
setting quality goals, applying metrics and making quality assessments.

UNCLASSIFIED

SUCURITY CLASBIPICATIOI OF -* PAGE(WtenT D.ll Eny..

.. 4/ • I ' t4. ii'•'"•

PREFACE

This document is Volume II of the Final Technical Report (CDRL A003) for the Software

Interoperability and Reusability contract, Number F30602-80-C-0265. The contract was

performed for Rome Air Development Center (RADC) to provide methodology and

technical guidance on software quality metrics to Air Force software acquisition

managers.

The final report consists of two volumes as follows:

Volume I - Final Report - Software Interoperability and Reusability

Volume II - Guidebook for Software Quality Measurement

The objective of this contract was to develop techniques to measure and predict software

quality with a perspective on interoperability and reusability. The techniques developed

were to be assembled into a "Handbook" which describes the step-by-step procedures

required to implement the quality measurements. Various methods of assembling a

handbook were investigated and it was decided that the best approach would be to use the
"Software Quality Measurement Manual" (RADC-TR-80-109), produced by a prior quality

metric research contract, as the baseline. Volume II of this final report is therefore an

update of RADC-TR-80-109, incorporating results of this contract and the results of

contract F30602-80-C-0330, "Quality Metrics for Distributed System". In addition, many

editorial changes and corrections were made, and all metric worksheets, tables, and'

definitions are included as appendices so that all material required to implement software

quality measurements is included in this document.

Volume I of this report describes the results of the research effort conducted under this

contract.

" .ty Codes
nnd'?or

!t

:'! .. t ..
" .:

TABLE OF CONTENTS

1.0 INTRODUCTION 1-1

1.1 Purpose 1-1

1.2 Scope 1-2
1.3 Quality Measurement in Perspective 1-2

1.4 Guidebook Organization 1-4
1.5 Recommended Use of Guidebook 1-7

2.0 IDENTIFYING SOFTWARE QUALITY REQUIREMENTS 2-1

2.1 Introduction 2-1
2 2 Identifying Important Quality Factors 2-4

2.2.1 Procedures 2-4

2.2.2 An Example of Factors Specification 2-13
2.3 Identifying Critical Software Attributes 2-16

2.3.1 Procedures 2-16
?.3.2 Example of Identifying Software Criteria 2-23

2.4 Establishing Quantifiable Goals 2-25
2.4.1 Procedures 2-25
2.4.2 Example of Metrics 2-36

2.5 Evaluation of Development Plan 2-38

3.0 APPLYING METRICS, 3-1
3.1 When to Take Measurements 3-1
3.2 Sources of Quality Information 3-3
3.3 Application of the Metrics 3-5
3.4 Techniques for Applying Metrics 3-9

4.0 ASSESSING THE QUALITY OF THE SOFTWARE PRODUCT 4-1

4.1 Introduction 4-1
4.2 Inspector's Assessment 4-1

4.3 Sensitivity Analysis 4-2
4.4 Use of Normalization Function to Assess Quality 4-4
4.5 Reporting Assessment Re~sults 4-13

TABLE OF CON4TENTS

S~pan

REFERENCES 4-Is

APPENDICES
A Mecric Worksheets A-i

B Metric Tables B-I

C Metric Explanations C-1

. oiii-

UST OF FIGURES

F~gure
Number

2.1-1 Software Quality Framework 2-2

2.2-1 Benefit Tradeoff: Quality Costs vs Cost Savings 2-10

3.1-1 Timing of Metrics Application 3-2

3.2-1 Sources of Quality Metric Data 3-4
3.3-1 Application of the Metric Worksheets 3-8
4.4-1 Normalization Function for Flexibility During Design 4-11
4.4-2 Determination of Level of Confidence 4-12

LIST OF TABLES

Table

Number

1.3-1 How Software Metrics Complement Quality Assurance 1-6
1.5-1 Index of Three Approaches to Specifying and Assessing Software Quailty 1-8
2.1-I Software Quality Factors and Criteria 2-3
2.2-1 Software Quality Requiremen cs Form 2-5
2.2-2 Examples of System Characteristics anid Related Quality Factors 2-7
2.2-3 Relationship of Quality Factors to Life-Cycle Phases 2-9
2.2-4 Relationships Between Software Quality Factors 2-11
2.2-5 Typical Factor Tradeoffs 2-12
2.3-1 Software Criteria and Related Quality Factors 2-17

2.3-2 Definiticns of Software Criteria 2-20
2.3-3 Software Criteria to Factor Relationships 2-24
2.4-1 Quality Factor Ratings 2-27
2.4-2 Quality Factor Rating Explanation 2-29
2.4-3 Quality Metrics Related to Factors 2-30
2.4-4 Software Metric to Factor Relationship-Subset 2-37
3.3-1 Metric Worksheet Correlation 3-6
4.4-1 Normalizatior Functions 4-7

-iv-

"-Er"IUE nAu~m&U.~

SECTION I
INTRODUCTION

1.1 PURPOSE

There has been an increaed awareness in recent years of the critical problems that have

been encountered in the development of large scale software systems, These problems

include not only the cost and schedule overruns typical of development efforts and the

poor performance of the systems once they are delivered, but also the high cost of

maintaining the systems, the lack of portability, and the high sensitivity to changes in

requirements.

The government and DoD in particular, as customers of many large scale software system

developments, have sponsored many research efforts aimed at attacking these problems.

For example, the efforts related to the development of a standard DoD prog:amming

language, software development techniques, and development tools and aids all provide

partial solutions to the above problems by encouraging a more disciplined approach to the

development of software and therefore a more controlled development process.

A related research thrust which has been recently funded by DoD is the area of software

quality metrics. The research in this area has resulted in the development and validation ii

of a number of metrics which quantitatively measure various attributes of software which

are related to different aspects of software quality.

The potential of the software metric concepts can be realized by use in software
procurement. Their use enables an acquisition manager to quantitatively specify the

desired level of quality for the software product and to pericdically measure the achieved

level of quality throughout the software development process. Their effect on a quality

assurance program is to provide a more disciplined, engineering approach to quality

assurance and to provide a mechanism for taking a life cycle viewpoint of software

quality. The benefits derived from their application are realized in life cycle cost

reduction and improved soft ýe quality resulting from added visibility for management
• control.

"The purpose of this guidebook is to present a complete set of procedures and guidelines

for introducing and utilizing r.,,rrent software quality metric techniques for a software.

S-.1

"- procurement associated with large scale software system developments. Thfse proced-

ures and guidelines encompass:

1. ' How to identify and specify software quality requirements;

2. How ano when to apply software metrics; and

3. low to interpret the information obtained from the application of the metrics.

1.2 SCOPE

This guidebook incorporates the results of research conducted in support of Rome Air

Development Center (RADC) in :he area of quality metrics for distributed systems and

software interoperability and reusability. It is an update of the "Soft,-are Quality

Measurement M&nual" previously produced under contract number F30602-78-C-0216 and

published as RADC-TR-80-l09, Volume 11 (of two). Software quality metric information

for the quality factors of survivability, eApandability, interoperability and reusabillty has

been added; information for use with distributed systems has be.en added; editorial

changes have been made; the metric worksheets have been refined, reorganized, and

placed in an appendix: and metric tables and definitions have been added to the guidebook

(appendices) for ease of use.

While some aspects of the technology of software quality metrics require further

research, those portions which car, currently provide benefit to a software acquisition

manager are emphasi7.ed in this guidebook. Guidelines and procedures for using the

software metrics are described. The guidelines and procedures are presented in such a

way as to facilitate their application when using this guidebook for a software develop-

ment project. All of the procedures are described as manual processes, however, where

automated software tools could be used to compliment or enhance the process, the tools

are ident!ffied.

Throughout this document the terms guidebook, handbook and manual are used i r-r-

changeably.

1.3 QUALITY MEASUREMENT IN PERSPECTIVE

The evolution during the past decade of modern programming practies, structured,

disciplined development techniques and methodologies, and requirements for more struc-

tured, effective documentation has increased the feasibility of effective measurement of

t-2

software quality. However, before the potential of measurement techniques could be

realized a framework or model of software quality had to be constructed. An estiished

model, which at one level provides a user or management oriented view of quality, is

described in Section 2 of this guidebook in the perspective of how it can be used to

establish software quality requirements for a specific application.

The actual measurement of software quality, described in Section 3.0, is accomplished by
applying software metrics (or measurements) to the docurnentat'-n and source code

produced during software ¢:evelopment. These measurements are part of the established

model of software quality, and through that model they can be related to various user-

oriented aspects of software quality.

rhe metrics can be classified according to three categories: anomaly-detecting,

predictive, and acceptance.

Anomaly-detecting metrics identify deficiencies in document. ion or source

code. These deficiencies usually are corrected to improve the quality of the

software product. Standards enforcement is a form of anomaly-detecting

metrics.

Predictive metrics are measurements of the soundness of the design and

implementation. These measurements are concerned with form, structure,

density, and complexity type attributes. They provide an indication of the

quality that will be achieved in the end product-based on the nature of the

application and the design and implementation strategies.

Acceptance metrics are measurements that are applied to the end product to

assess the final compliance with requirements. Tests are a form of

acceptance-type measurements.

The metrics described and used in this guidebook are either anomaly-detecting or

predictive. They are applied during the software development phases to -.ssist in

identification of quality problems early in the life cycle so that corrective actions can be

taken early when they are more effective and economical and to enable a prediction of

the quality level expected for the final product.

1-3

The measurement concepts complement current quality assurance practices; they are not

a replacement for current techniques utilized in norrt al quality assurance programs. For

example, a major objective of quality assurance is to assure compliance with user/

customer requirements. The software quality metric concepts described i'l this guidebook

provide a methodology for the user/customer to specify life-cycle-oriented quality

requirements, usually not considered, and to provide a mechanism for measuring whether

or not those requirements have been attained. A function usually performed by quality

assurance personnel is a review/audit of software products produced during software

development. The software metrics add formality and quantification to these document

and code reviews. The metric concepts also provide a vehicle for early involvement in the

development process since there are metrics which apply to the requirements and design

documents produced early in the development.

Testing is usually oriented toward evaluating performance (reliability, usability, perfor-

mance, efficiency, etc.). The metrics can assist in evaluati, 1 other qualities such as

maintainability, portabiiity, flexibility, etc.

A summary of how the software metric concepts complement quality assurance activities

is provided in Table 1.3-1. This is based on the quality assurance program requirements

identified in MIL-S-52779. These concepts will be further explained and illustrated in the j
subsequent sections of this guidebook.

1.4 GUIDEBOOK ORGANIZATION

The guidebook has been organized as a handbook for use in software acquisitior. Section 1

provides introductory information and how the guidebook is to be used.

Section 2 defines the software quality model end describts a methodology for using this

model to establish software quality r-,quirements or goals for a software development

project.

Section 3 describes procedures for measuring the quality of the software. These

procedures cover what to measure, when to measure, and how to measure.

Section 4 describes procedures for utilizing the information provided by the measurements

to make assessments of the quality of the software and recommends what information to

present to various personnel involved in the deveiopment.

1 -4

Appendix A contains the metric worksheets used for collecting data-

Appendix B contains the metric tables used for calculating metric scores during the

various measurement periods.

Appendix C contains a detailed description of the metric elements.

I*-5

Table 1.3-1 How Software Metrics Complement Quality Assurance

MIL-S-52779

-QUALITY ASSURANCE IMPACT OF SOFTWARE QUALITY

PROGRAM REQUIREMENTS METRIC CONCEPTS

Assure Compliance with Adds software quality requirements

Requirements

Identify Software Deficiencies Anomaly-detecting metrics

Provide Configuration Management No impact

Conduct Test Assists in evaluation of other qualities

Provide Library Controls No impact

Review Computer Program Design Predictive metrics

Assure Software Documentation Metrics assist in evaluation of documenta-

Requirement Compliance tion as well as code

Conduct Reviews and Audits Procedures for applying metrics (in form of

worksheets) formalizes inspection process

Provide Tools/Techniques/iMetho- This manual describes methodology of using

dology for Quality Assurance metrics

Provide Subcontractor Control Same as above for all requirements

1-6

1.5 RECOMMENDED USE OF GUIDEBOOK

The software quality metric concepts can be applied at several levels. In an acquisition
manager/contractor environment, there are three approaches for using the metric
concepts. They are:

1. The acquisition manager's staff can establish software quality requirements or
goals and apply metrics to the delivered software products.

2. The development manager's staff can apply metrics to software products
during development and report them to the acquisition manager during
reviews.

3. An independent Quality Assurance or Independen~t Verification and Validation
(IV&V) contractor can apply metrics to delivered software products and report
them to the acquisition manager.

Within the software development project organization, there are two approaches for using
the metric concepts. They are:

I. The quality assurance personnel cen apply the metrics as an independent
assessment of the quality of the software being produced and report them to
the software development manager.

2. The software development personnel can apply the metrics during walk-
throughs and reviews and report them to the software development manager.

This guidebook is oriented toward those personnel who will be applying the quality metrics
concepts (either quality assurance or development personnel) and recommends three
approaches to both establishing the quality requirements (Section 2) and making a quality
level assessment (Section 4). The three approaches (an index is provided in Table 1.5-1) in
each area are presented in order of increasing formality of the relationship between
quality requirements and metrics, i.e., in order of increasing quantification. The order of
presentation also relates to an increasing requirement for experience with the concepts by
the personnel applying the concepts. Thus, the approaches can be used as a phased
implementation plan of incorporating the metric concepts into the quality assurance

f unctions.

1-7

Table 1.- Index of Three Approaches to Specifying and Assessing Software Quality

APPROACH ASSESSING THE

(LEVEL OF SPECIFYING APPLYING QUALITY OF

FORMALITY) SOFTWARE QUALITY MEASUREMENTS THE PRODUCT

I Procedures for iden-

tifyinig important qualit PROCEDURES Procedures for

factors FOR the inspector's
(Paragraph 2.2) APPLYING assessment

I THE (Paragraph 4.2)
2Procedures for iden- METRIC

tifying critical software WORKSHEETS Procedures for

attributes (SECTION 3) performing sensi-
(Paragraph 2.3) tivity analysis

(Paragraph 4.3)

3 Procedures for establish- Procedures for
ing quantifiable goals use of normaliza-
(Paragraph 2.4) tion function

____________ ___ ___ ___ ____ ___ ___ _ _____________ (Paragraph 4.4)

Ahis guidebook is recommended to the personnel applying the metric concepts. Additional

information and definitions can be found in:

"Factors in Software Quality", 3 volumes, RADC-TR-77-369, Nov 1977. (MCCA77)

"Software Quality Metrics Enhancements", 2 volumes, RADC-TR-80-109, April 1980

"Softw:u-e Interoperability and Reusability-Final Report".

"Software Quality Measurement for Distributed Systems - Final Report", Volume T
of this report.

These references are recommended to the personnel applying the metrics for familiariza

tion with the underlying concepts. They can also be referred to periodically for

definitions and explanations.

I

.-

1-9

W.

SECTION 2

IDENTIFYING SOFT WA RE QUALITY REQUIRE MENTS

2.1 INTRODUCTION

The primary purpose of using software quality metrics in a software acquisition is to

improve the quality of the software product by specifying software quality requirements

and by measuring and predicting achieved software quality. The concepts can improve

quality since they are based on achieving a positive influence or the product.

This section addresses the task of identifying software quality requirements and

establishing quantifiable goals. These reqjuirements are in addition to the functional,

periormance, cost, and schedule requirements normally specified for software develop-

ment. The fact that the goals established are related to the quality of the end product

should, in itself, provide some positive influence. Past research has shown that goal-

directed system development is effective. (WEIN72)

The vehicle for establishing the requirements is the hierarchical model of software quality

defined in (CAVA7S). This model, shown in Figure 2.1-1, has at its highest level a set of

software quality factors which are user /nanagement-oriented terms and represent the

characteristics which comprise softwr quality. At the next level, for each quality

factor, there is a set of criteria which are the attributes that, if present in the software,

provide the characteristics represented by the quality factors. The criteria, then, are

software-related terms. Table 2.1-1 identifies the thirteen quality factors, the thirty

quality criteria, and their relationships. At the lowest level of the model are the metrics

which are q~uantitative measures of the software attributes defined by the criteria. In, a

sense there is a still lower level of the model - the metric elements. Several metric

elements, completed at several points in the software life-cycle, may be combined in

calculations for a single metric. Appendix B, Metric Tables, identifies the metrics and
metric elements.

The procedures for establishing the quality requirements for a particular software system

utilize this model and are described as a three level approach; the levels correspond to the
hierarchical levels of the software quality model. The first level establishes the quality

factors that are important. The second level identifies the critical software attributes.

2-1

USER-ORIENTED VIEW OF
F O PRODUCT QUAUTY

SOFTWARE-ORIENTED
CRITERION CRITERION CRITERION ATTRIBUTESWI4ICH

INDICATE QUAUTY

METRIC METRIC METRIC QUANTITATIVE MEASURES
OF ATTRIBUTES

Figure 21-1 Software Quality Framework

2-2

Table 2.1-1 Software Quality Factors and Criteria

50SNAT~N 11V1104 WTANSlO

QUALITY PACO ; 4

t C Aa U AL T A A a a 4 U
A I I I V N I K T S aI A

I A C 0 1 1 p I A A AU C
C I I At L V A 1 0 9 1 0 0" I I I I A I A I I I P A

QUAUMTY N L N T T 1 1 L L L a I
c~miV a i C Y Y I A I I I I R I

5011UTWNM S Y L L. . L T T T A L
on $! I I I y y y a I

T L T I
SOVIWARS y I I L y

OMUINICT) N T
y

"* ACCURACY x

" ANOMALY MANAGEMENT T K

"* APPLICATION INDEPENDENCE

"* AUGMENTABIIUTY K K

" AUTONOMY x
--- --- --- ---- ---- ---- --- ---- ---- ---- ---- ---- ---- ---

* COMMONALITY x

" COMMUNICATIVENESS x

" COMPLETENESS V

"* CONCISENESS $

" CONSISTENCY x x x
--------------------,-T-P-t--,--E----E-- --- --- --- --- ------ X

S• MDUSARIUTYDES K

* DOCUMENT ACCESSIBILITY R

e EFFECTIVENESS x

e FUNCTIONAL OVERLAP K

* FUNCTIONAL SCOPE x
------------------ --- --- x----------------

"* INDEPENDENCE x K r

"* MODULARITY Kx x x x x x x

O OPERABILITY x

*RECONFIGURASILITY x
-- --- ---------------

"* SELF-OUSCRIPTIVZNESS, x x K x x

"* SIMPLICITY K K K K K K K

"* SPECIFICITY K K K

"* S'?'.TW0 ,•-CESSMHIUTY x

"* SYSTEM CLARITY x"--------"------- -------- ------ --------------------------------.................
9 SYSTEM COMPATIBILITY K

e TRACEABILITY x

* TRAINING x

* VIRTUAUTY X X K

0 VISIBILITY x x x

2-3

L -. v--

The third level identifies the metrics that will bie applied and establishes quantitative

ratings for the quality factors.

Once the quality requirements have been determined by following the procedures

described in the subsequent paragraphs, they are to be transmitted to the development

team. In a formal acquisition manager/contractor environment, the Request for Proposal

(RFP) is the medium for identifying these requirements. The results ot following the

procedures should be incorporated in the RFP. If the development is being done
internally, the quality requirements should be documented in the same form as the other
system requirements. A briefing emphasizing the intent of the inclusion of the quality

requirements can also be conducted.

2.2 IDENTIFYING IMPORTANT QUALITY FACTORS

2.2.1 Procedures

The basic tool utilized in identifying the important quality factors is the Software Quality
Requirements Form shown in Table 2.2-1. The formal definitions of each of the thirteen

factors are provided on that form.

A briefing, using the tables and figures contained in this paragraph, should be condiucted
for the decision makers in order to solicit their responses to the survey. The decision
makers may include the acquisition manager, the user/customer, the development

manager, and the quality assurance manager. To complete the survey the following liveI
procedures are recommended.

I a. Consider Basic Characteristics of the Application
The software quality requirements for each system are unique and are

influenced by system or application-dependent characteristics. There are
basic characteristics which affect the quality requirements and each software
system must be evaluated for its basic characteristics. Table 2.2-2 provides a
list of some of these basic characteristics. For example, if the system is being
developed in an environment in which there is a high rate of technical
breakthroughs in hardware design, portability should take on an added signifi-

cance. If the expected life cycle of the systemr is long, maintainability and

2-4

Table U.2-I Software Quality Requirements Form

The 13 quality factors listed below esent aspects of software quality which are
currently thought to be Important. Indicate whether you consider each factor to be
Very Important (VI), Important (I), Somewhat Important (SI), or Not Important (NI) as
desin goals in the system you are currtntly working on or planning.

SFACTORS DEFINITION

CORRECTNESS Extent to which the software satisfies
its specifications and fulfills the user's
mission objectives.

RELIABILITY Probability that the software will per-
form its logical operations in thia speci-
fied environment without failure.

EFFICIENCY Degree of. utilization of resources (pru-
cosing time, storage, communication
time) in performing functions.

INTEGRITY Extent to which unauthorized access to
the software or data can be controlled.

USA•IL1Tv Effort for trainil anti software opera-
tion - f auliar i'_Jon, input preparation,
vxe-.ution, output interpretation.

SURVIVABILITY Probability that the software will conti-
nus to perform or support critical func-
tions when a portion of the syste.n is
inopera•le.

MAINTAINABLrY Average effort to locate ar, fix a soft-
ware failure.

VERIPIAMLJTY Effort to verity the specified software
operatior, and performance.

FLEXIBILITY Effort to extend the software missions,
functions, or data to msat'sy other
requirements.

PORTABILITY Effort to convert the software for use in
another operating environment (hard-
ware configuration, software system
environment).

-USABILITY Effort to convert a software component
for use In another application.

INTEROPERABILITY Effort to couple the software of one
system to the software of another sys-
tem.

_____.. XPANDABILITY Effort to Inrease software capability or
performance by enhancing current func-

ISI

Table 2.2-2 Example of System Characteristics and Related Quality Factors

SYSTEM

CHARACTERISTIC QUALITY FACTOR

If human lives are affected Reliability
Correctness
Verifiability
Survivability

Long life cycle Maintainability
Expandability

Experimental system Flexibility
high rate of change

High technology in hardware design Portability

Many system changes over life cycle Reusability
Expandability

Real time application Efficiency
Reliability
"Correctness

On-board computer application Efficiency

Reliability

Correctness
Survivability

Processes classified information Integrity

Interrelated systems Interoperability

2-6

expandability become cost-criticai considerations. If the applirsktion Is an

experimental system where the software specifications will h',e a high rate of

change, flexibility and expandability in the saftw-.-;; product are highly

desirable. If the functions of the system are expected to be required for a

long time, while the system itself may change considerably, reusability and

expandability are of prime importance In those modules which Implement the

major functions of the system. With the advent of more computer networits

and communication capabilities, more systems are being required to Interface

with other systems and the concept of interoperability is extremely important.

With distributed computing systems, more attention is given to providing some

essential computational services even when some subsystems are inoperable,

and the concept of survivability is extremely important. For systems with

long life-cycles (e.g., 1-20 years for a major weapon system) some provisions

must be made for incorporating new hardware (add-on memory or peripherals)

or new software (upgraded operating system), and the concept of expandability

becomes crucial. These and other system characteristics should be considerod

when identifying the important quality factors.

If system level quality requirements have already been established, refer to

Section 3.2 of Volume I (f this report for aids in allocating the system quality

requirements to the spitware level and in identifying important software

quality factors.

lb. Consider Life Cycle Implications

The thirteen quality factors identified on the Software Quality Requirements

Form (Table 2.2-1) can be grouped according vo three life cycle activities

associated with a delivered software product. These three activities are

product operation, product revision, and product transition. The relationshlp

of the quality factors to these activities is shown in Table 2.2-3 under the post

development period. This table also illustrates where quality ratings can be

predicted through measurement (,L) and where the impact is felt if poor

quality is recognized (X)

2-7

IF
2-

The slze of this impact determines the cost savings that can be expected if a higher

quality system is achieved through the application of the metrics. This cost savings is

somewhat offset by the cost to apply the metrics and the cost to develop the higher

q;.,ality software product as illustrated in Figure 2.2-1. The cost to apply the metrit. is

difficult to estimate for the first project in which they are applied. This is due to the

training time for personnel applying metrics. Experience shows that a learning curve

tipplies - that subsequent applications of metrics have a lower cost and greater cost

saving opportunities.

LIFE
CYCLE

COST TO DEVELOP SAVINGS AS
HIGH QUALITY SOFTWARE A RESULT OF
PLUS HIGHER
COST TO QUALITY
MEASURE QUALITY PRODUCT

Figure 2.2-1 Benefit Tradeoff: Quality Costs vs Cost Savings

This cost to implement versus life-cycle cost reduction relationship exists for each

quality factor. The benefit, cost-to-provide versus cost-saved ratio, for each factor is

rated as high, medium, or low in the right hand column of Table 2.2-3. This relationship

and the life-cycle implications of the quality factors should be considered wheia selecting
the important factors for a specific system. fl

Ic. Performance Tradeoffs Amonit the Ouality Factors
As a result of steps la and lb, a tentative list of quality factors should be

produced. The next step is to consider the interrelationships among the
factors selected. Tables 2.2-4 and 2.2-5 can be used as a guide for

determining the relationships between the quality factors. Some factors are
synergistic while other conflict. The impact of conflicting factors is that a

lower quality level can be expected for each factor if both are required than
can be expected if only one or the other is required. The synergistic (positive

tradeoffs) and conflicts (negative tradeoffs) may reflect a more complex
interrelationship of factors. For example, there may be a group of three

factors which can all be enhanced together by a design decision. An effort
should be made to identify such multiple tradeoffs for the particular software

product.

2-9

Table 2.2-4 Relationships Between Software Quality Factors

LEGEND:
IF A HIGH DEGREE OF QUALITY
IS PRESENT FOR ONE FACTOR,
THE DEGREE OF QUALITY EXPECTED
FOR THE OTHER FACTOR IS.

aHIGH
aLOW

SOFTWARE BLANK -NONE OR DEPENDENT UPON

QUALITYAPLCTO
FACTORS C

C

1.I F SI A

QUSABLITY T A F II A s P

MANTINBIIA ' I a
t

POSBLT I--- ---- ---- --- IL

REATLT I_ I I A.
2NTEROPERABILITY 4A - -R I a N F

AdANA&LI Y L A L P. T.A.

EFFICENCYL a 2-10

Table 2.2-5 Typical Factor Tradeoffs

EFFICENCY THE ADDITIONAL CODOAD[CUESN REQUIRED TO CONROLJD CURC
INTEm TO ACESSFOR ANOO AL OR MATAGMN USUALLY LNCREASES RUN TM N

TIEADREQUIRES A DDITIONAL STORAGE.

Vs FEXIJTY THE ADimONALTCODEQUAND FOROCLESSINLE REQUSABE.T EASEA

Ids~ilf EP&OAL SFWAEUSUALLY INC:ES UNI~ADREASUSIR E ADIFONALrYO

INT1111OPRM STORMAAGE.ETFRSECFCCSS

SURIV8ITYTHE ADDITIONAL CODE AND PROCESSING REQUIRED TORCNTO
iNTIGA ODULAR RCES EOCONFSURDAALESUANOMLY LNTOLENSRAN TIM O ANE

RESULTES ADITESFICINAST OPRATIO.

USINGr MHDDTONULAR VISIDEAN SPROCESCSINTVEWIRODE TO INCREASN

SUAIVTIABI~LIY TEADINTAIONAILTOD AND PERIOACEi SUAYIN C URIEASFOR

EFFACIENCY VERIFIABIUITY OVERHEAD AND RESULTS IN LESS EFFICIENT OPERATION. CODE
VS WHICH 1S OPTIMIZED FOR EFFICIENCY POSES PROBLEMS TO THE

TESTER & MAINTAINER.

PtfXIBIU1Y THE GENERALITY REQUIRED FOR FLEXIBLk AND REUSABLE
REUSABILITY SOFTWARE INCREASES OVERHEAD AND DECREASES OFFICIENCY

THE USE OF CODE OPTIMIZED FOR EFFICIENCY USUALLY
PORTABIUITY DECREASES PORTABILITY.

INTEROPIRABIUITY THE OVERHEAD FOR CONVERSION PROM STANDARD DATA
REPRESENTATIONS AND FOR THE USE OF STANDARD INTERFACE
ROUTINES DECREASES OPIERAT"IG EFFICIENCY.

EXPANDASILITY THE USE OF MODULAR. GENERAL SOFTWAAIE USUALLY DECREASES
OPERATING EFOICIENCY

THE DISTRIBUTEDNESS REQUIRFO FOR SURVIVABLE SOFTWARESURVIVABILITY INCREASES THE RISK O, UNAUTHORIZED ACCESS.

FLEXIBILITY THE GENERALITY REQUIRED FOR FLEXIBLE AND REUSABLE
REUSABIUITY SOFTWARE INCREASES THE RISK OF UNAUTHORIZED ACCESS.

VSNTOUPLE SYSTEM HAVE MORE AVENUES OF ACSDIFFERENT

INTROPRAU~rYUSERS, AND COMMON DATA REPRESENTATIONS; THE Y OFTEN
SHARE DATA AND CODE. THESE INCREASE THE POTENTIAL FOR
ACCIDENTAL OR DELBSERATE ACCESS OF SENSITIVE DATA.

THE GENERALITY REQUIRED FOR EXPANDABLE SOFTYARE
EXPANOABILITY INCREASES THE RISK OF UNAUTHORIZED ACCESS.

SURVIVABIUITY FLEXIBIUITY THE RECONFIGURABILITy REQUIRED FOR SURVIVAS E SOFTWARE
VSPREUABILITY REDUCES ITS FLEXIBILITY, PORTABILITY. AND REUSABIUTY.

INTERIPIERABIUTY MAINTIAINABILITI TH ADDITIONAL COMPLEXITY INTRODUCED BY
VS VERIFIAJIUTY COMMUNICATION. FUNCTIONAL INTERFACING. AND DATA

FLEXIBILITY COMM0ONAUTY BETWEEN SYSTEMS iNCRE,..SES THE COMPL.EXITY
OF CHANGING, VERIFYING. AND MAINTAINING THE SOFTWARE

1Id. Identify Most Import-ant Quality Factors
Based on I a through I c, a list of quality factors considered to be important for

the particular system can be compiled. The list should be organized in order
of importance. A single dr-cizion maker can be assigned to choose the factors

or the choice can be made by averaging several survey responses. The

definitions of the factors chosen should be included with this list.

le. Provide Explanation for Choice

The rationale for the decisions made during steps Ila through Ic should beI. documented. If a factor is not considered important for the system, a
rationale may also be provided. For 'example, maintainability may not be

emphasized because verifiability (given top priority) will ensure a thoroughly
tested (and therefore highly maintainable) product.

2.2.2 An Example of Factors Specification

To illustrate the application of the above steps, consider a spare parts inventory control
system. The inventory control system maintains inv~entory status and facilitates requisi-
tioning, reordering, and issuing of spare parts to Air Force units in support of various
missions. The planned life of the system is ten years.

Each step described previously will be performed with respect to the spare parts inventory

control system.

I a. Consider Basic Characteristics of the App~lication
Utilizing Table 2.2-2 and considering the unique characteristics of the spare

parts inventory control system resulted in the following:

Characteristic Related Quality Factor
Critical Support for Reliability

a Flying Unit Correctness

Verif iability

Survivability

2-12

Characteristic Related Quality Factor

Long Life Cycle Maintainability
With Stable Hardware

And Software Requirements

Utilized By Air Force Main- Usability

tenance Personnel

Interfaces with other Air Interoperability
Force Inventory Systems (e.g.

Supplies)

lb. Consider Life Cycle Implications
For the five quality factors identified in la, determine the life cycle cost

benefits according to Table 2.2-3.

QUALITY
FACTORS COST BENEFIT RATIO

Reliability High

Correctness High
Verifiability High

Survivability low

Maintainability High

Usability Medium
Interoperability Medium

Ic. Perform Trade Offs Among Quality Factors
Using Table 2.2-4, there are no conflicts which need to be considered.

Id. Identify Most Important Quality Factors
Using Table 2.2-1 akid the guidance provided by steps la through 1c, the
following factors are identified in order of importance; provide the definitions.

CORRECTNESS -Extent to which the software satisfies its specifica-
tions and fulfills the user's mission objectives.

2-13

RELIABILITY -Probability that the software will perform its logical

operations in the specified environment without fail-

ure.

USABILITY -Effort for training and software operation -tamiliari.

zation, input preparation, execution, output interpre-

tation.

VERIFIABILITY -Effort to verify the specified software operation and

performance.

SURVIVABILITY -Probability that the software will continue to perform

or support critical functions when a portion of the
system is inoperable.jMAINTAINABILITY -Average effort to locate and fix a software iailure.

INTE ROPE RABILITY -Effort to couple the software of one system to the

software of another system.

le. Provide Explanation for Choice
Document the rationales for the decisions made in the above step.

CORRECTNESS -System performs critical spare part~s pr ovisioni

function.

RELIABILITY -System performs critical spar- parts provision

functions in field environment.

VERIFIABILITY -System performs critical spare parts provision

f unctions.

SURVIVABILITY -System performs critical spare parts provision

function in field environment and will interface with
other systems.

2-14

USABILITY -System will be used by military personnel with mini-

mum computer training.

MAINTAINABILITY -System life Cycle 1s projected to be 10 years and will
operate in the field and be maintained by military

personnel.

INTEROPERABILITY -System will interface with other inventory systems.

2.3 IDENTIFYING CRITICAL SOFTWARE ATTRIBUTES

2.3.1 Procedures

The second level of identifying the quality requirements involves proceeding from the
user-oriented quality factors to the software-oriented criteria. Sets of criteria, which are
attributes of the software, are related to the various factors by definition. Their
identification is automatic and represents a more detailed specification of the quality
requirements. Ide~ntification of a quality factor does not automatically mean that all
criteria within tmtt factor are equally important. Tradeoffs and synergism's may exist
between criteria within the same factor. A subset of the criteria within a factor may be
identifiled.

2a. Identify Critical Software Attributes Required
Table 2.3-1 is used to identify the software attributes (criteria) associated
with the chosen software quality factors.

2-1 5

Table 2.3-1 Software Criteria and Related Quality Factors

QUALITY
FACTOR SOFTWARE CRITERIA

CORRECTNESS COMPLETENESS

CONSISTENCY

SIMPLICITY
SPECIFICITY
TRACEABILITY

EFFICIENCY EFFECTIVENESS

FLEXIBILITY GENERALITY

MODULARITY

SELF-DESCRIPTIVENESS

SIMPLICITY

INTEGRITY SYSTEM ACCESSIBILITY
VIRTUALITY

INTEROPERABILITY AUGMENTABILITY

COMMONALITY

COMMUNICATIVENESS
FUNCTIONAL OVERLAP

INDEPENDENCE

MODULARITY

SYSTEM COMPATIBILITY

MAINTAINABILITY CONCISENESS

CONSISTENCY

MODULARITY

SELF-DESCRIPTIVENESS
SIMPLICITY

VISIBILITY

2-16

Table 2.3-1 (continued)

QUALITY
FACTOR SOFTWARE CRITERIA

EXPANDABILITY AUGMENTABILITY
GENERALITY

MODULARITY

SIMPLICITY

SPECIFICITY
VIRTUALITY

PORTABILITY INDEPENDENCE
MODULARITY

SELF- DESCRIPTIVENESS

RELIABILITY ACCURACY
ANOMALY MANAGEMENT

CONSISTENCY
SIMPLICITY

RFEUSABILITY APPLICATION INDEPENDENCE

DOCUMENT ACCESSIBILITY
FUNCTIONAL SCOPE

GENERALITY
INDEPENDENCE

MODULAR!TY

SELF DESCRIPTIVENESS

SIMPLICITY
SYSTEM CLARITY

VERIFIABILITY MODULARITY
SELF -DESCRIPTIVENESS

SIMPLICITY
SPECIFICITY

VISIBILITY

2-17

Table 2.3-I (continued)

QUALITY
FSOFTWARE CRITERIA

USABILITY COMMUNICATIVENESS

OPERABILITY

TRAINING

VIRTUALITY

VISIBILITY

SURVIVABILITY ANOMALY MANAGEMENT

AUTONOMY

DISTRIBUTEDNESS

MODULARITY

RECONFIGURABILITY

2-18

2b. Provide Definitions

Table 2.3-2 should be used to provide the definitions of criteria as part of the

specification.

Table 2.3-2 Definitions of Software Criteria

SOFTWARE CRITERION DEFINITION

ACCURACY Those attributes of the software which provide
the required precision in calculations and outputs.

ANOMALY MANAGEMENT Those attributes of the software which provide
for continuity of operations under, and recovery
from nonnominal conditions.

APPLICATION INDEPENDENCE Attributes of the software which determine its
dependency on the software application (database
system, data structure, system libraries routines,
microcode, computer architecture and algorithms)

AUGMENTABILITY Those attributes of the software which provide
for expansion of capability for functions and data.

AUTONOMY Those attributes of the software which determine
its nondependency on interfaces and functions.

COMMONALITY Those attributes of the software which provide
for the use of interface standard for protocols,
routines, and data representations.

COMMUNICATIVENESS Those attributes of the software which provide
useful inputs and outputs which can be assimila-
ted.

COMPLETENESS Those attributes of the software which provide
full implementation of the functions required.

CONCISENESS Those attributes of the software which provide
for implementation• of a function with a minimum
amount of code.

CONSISTENCY Those attributes of the software which provide
for uniform design and implementation techniques
and notation.

DISTRIBUTEDNESS Those attributes of the software which determine
the degree to which software functions are geo-
graphically or logically separated within the sys-
tem.

DOCUMENT ACCESSIBILITY Attributes of the software which provide easy
access to and selective use of system components.

2-1 9

Table 2.3-2 (continued)

SOFTWARE CRITERION DEFINITION

EFFECTIVENESS Those attributes of the software which provide
for minimum utilization of resources (processing
time, storage, operator time) in performing func-
tions.

FUNCTIONAL OVERLAP A comparison between two systems to determine
___ the number of functions common to both systems.

FUNCTIONAL SCOPE Those attributes of the software which provide
the scope of functions rmquired to be performed
i.e. specificity, commonality and completeness.

GENERALITY Those attributes of the software which provide
breadth to the functions performed with respect
to the application.

INDEPENDENCE Those attributes of the software which determine
its non-dependency on the software environment
(computing system, operating system, utilities,
input/output routines, libraries).

MODULARITY Those attributes of the software which provide a
structure of highly cohesive m..-)dules with opti-
-mum coupling.

OPERABILITY Those attributes of the softwar-; which determine
operations and procedures concerned with the
operation of the software.

RECONFIGURABIL!TY those attributes of the software which provide
for continuity of system operation when one or
more processors, storage units, or communication
links fail.

SELF-DESCRIPTIVENESS Those attributes of the software which provide
explanation of the implementation of a function.

SIMPLICITY Those attributes of the software which provide
for the definition and implementation of functions
in the most non-complex and understandable man-
ner.

SPECIFICITY Those attributes of the sottware which provide
for singularity in the definition and implementa-

tion of functions.

SYSTEM ACCESSIBILITY Those attributes of the software which provide
for control and audit of access of software and
data.

2 -20

Table 2.3-2 (coutlnued)

SOFTWARE CRITERION DEFINITION

SYSTEM CLARITY Those attributes of the software which provide
clear description of program structure in the most
non-complex, easily understandable and niodi-
f iabie manner.

SYSTEM COMPATIBILITY A measure of the hardware, software and com-
munication compatibility of two systems.

TRACEABILITY Those attributes of the software which provide a
thread of origin from the implementation to the
requirements with respect tu the specific devel-
opment envelope and operational environment.

TRAINING Those attributes of the software which provide

transition from current operation or provide

initial familiarization.I
VIRTUALITY Those attributes Of the software which present a

system that does not require user knowledge of
the physical, logical, or topological characteris-
tics (e.g., number of processors/disks, storage
locations).

VISIBILITY Those attributes of the software which provideti
status monitoring of the development and opera-

tion (e.g., instrumentation).

2-21

2.3.2 Example of Identifying Software Criteria

Continuing with the example of paragraph 2.2.2, the software criteria for the identified
quality factors would be chosen.

2a. Identify Critical Softwakre Attributes
Using the relationships provided in Table 2.3-1, the software criteria shown in
Table 2.3-3 would be identified. Evaluation of the definitions of the criteria in
th'a context of the software product and its quality goals, may allow a number
of the resulting criteria to be eliminated.

2-22

Table 2.3-3 Software Criteria to Factor Relationships

RELATED FACTOR

SOFTWARE

CRITERIA CO RL SV MA VE US IP

TRACEABILITY X

CONSISTENCY X X X

COMPLETENESS X

ANOMALY MANAGE- X X

MENT

ACCURACY X

SIMPLICITY X X X

CONCISENESS x

MODULARITY X X X X

SELF- DESCRIPTIVENESS X X

OPERABILITY x
TRAINING x

COMMUNICATIVENESS X

COMMONALITY x
FUNCTIONAL OVERLAP X

INDEPENDENCE X

SYSTEM COMPATIBILITY X

VISIBILITY x x x
AUGMENTABILITY x

MODULARITY x

AUTONOMY X

DISTRIBUTEDNESS x

RECONFIGURABILITY X

SPECIFICITY X

CO Cor-rectness, RL = Reliability, SV Survivability

MA : Maintainability, VE = Verifiability,

US Usability, IP : Interoperability

2-23

2b. Provide Definitions

The definitions for each of these software criteria, as 3hown 'An Table 2.3-2

would also be provided as part of the specification.

2&.4 ESTABLISHING QUANTIFIABLE GOALS

2.4.1 Procedures

The third and last level, which is the most detailed and quantified, requires precise

statements of the level of quality that will be acceptable for the software product.

('¶-rrently, the underlying mathematical relationships which allow measurement at this

level of precision do not exist for all of the quality factors. The mechanism for making

the precise statement for any quality factor is a rating or figure-of-merit of the factor.

The underlying basis for the ratings of all factors except reliability and survivability is the
effort or cost required to perform a function such as to correct or modify the design or
program. For example, ra~ting for maintainability might be that the average time to fix a

problem should be five man-days or that 90% of the problem fixes should take less than

six man-days. This rating would be specified as a quality requirement. To comply with

this specification, the software would have to exhibit characteristics which, when present,
give an indication that the software will perform to this rating. These characteristics are

measured by metrics which are inserted into a mathematical relationship to obtain the

predicted rating. Note that the reliability ratings are provided in terms familiar to

traditional hardware reliability. Just as in hardware reliability there are significant

differences between ratings of .9 and .99.

In order to choose ratings such as the two mentioned above, data must be available which

allows the decision maker to know what is a "good rating" or perhaps what is the industry

average. Currently there is genv-rally a lack of good historical data to establish these

expected levels of operations and maintenance performance for software. There are
significant efforts underway to compile historical data and derive the associated

performance statistics (DUVA76). Individual software development organizations and

System Program Offices should attempt to compile historical d~ata for their particular
environment. Any environment-unique data available should be used as a check against

thr- data provided as guidelines in this manual. The data utilized in this section is based
on experiences applying the metrics to several large command and control software

systems and other experiences reported in the literature.

2-24

3a. Specify Ratinit for Each Quality Factor

After identification of the critical quality factors, specific performance levels

or ratings required for each factor should be specified. Tables 2.4-1 and 2.4-2

should be used as a guideline for identifying the ratings for the particular

factors. Note that mathematical relationships have not been established f or

some of the factors. In those cases, it is advisable not to levy requirements

for meeting a specif ic quality rating but instead specify the relative impor-

tance (priority) of the quality factor as a development goal.

3b. Identify Specific Metrics to be Applied

The next step or an alternative to 3a is to identify the specific metrics which

ment. The Metric Worksheets described in Appendix A can be used for this

purpose or Table 2.4-3 can be used to identify the metrics and reference can

be made to Appendix C where definitions of the metrics are provided. ~ i

Detailed e~xamination may allow a subset of the metrics within a criteria to be

isolated.

3c. Specification of Metric Threshold Values

In lieu of specifying quality ratings or in addition to the ratings, specific
minimum values for parnticular metrics may be specified. This technique is

equivalent to establishing a standard which is to be adhered to. Measurements

less than the value established are to be reported. Typical values can be

derived by applying the metrics to software products developed in a particular

environment or by looking at the scores reported in (MCCA77), (MCCA8O) or

Volume 1 of this report When establishing these threshold values based on

past project data, projects which have been considered successful, i.e., have

demonstrated good characteristics during their life cycle should be chosen.

For example, a system which has been relatively cost-effective to maintain

over its operational history should be chosen and the metrics related to

maintainability applied to establish threshold values. Incentives may also be

offered if a particular metric exceeds a maximum threshold value.

2-25

Table 2.4•- Quality Factor Ratings

QUALITY FACTOR RATING EXPLANATION RATING GUIDELINES

RELIABILITY* Rating is in terms of the number RATING .9 .99*4 .99 .999
of errors that occur after thestart of formal testing. ERRORS 10 2 1 .

100 LOC
Rating = I-Number of Errors

Number of Lines of
source code exclud-
ing comments

MAINTAINA- Rating is in terms of the average RATING .3 .5 .7"* .9
BILITY* amount of effort required to lo-

cate and fix an error in an opera- AVERAGE 7 5 3 1
tional program. EFFORT

(MAN
Rating = 1-.1 (Average number DAYS)

of man days
per fix)

PORTABILITY* Rating is in terms of the effort RATING .25 .5** .75 .9
required to convert a program to -

rvn in another environment with % OF 75 50 25 10
respect to the effort required to ORIGINAL
originally implement the program. EFFORT

Rating = I-Effort to Transport
Effort to Implement _

FLEXIBILITY* Rating is in terms of the average RATING .3 .** ,7 .9
effort required to extend a pro-
gram to include other require- AVERAGE 14 10 6 2
ments. EFFORT

(MAN
Rating 1-.05(Average number DAYS)

of man days to change)

REUSABILITY* Rating is in terms of the effort RATING .2 .4**, .75 .9
required to convert a program to
a different application with re- % OF go 60 25 10
spect to the effort required to EFFORT
build a new program. TO BUILD

Rating I -Effort to Convert
Effort to Build

2-26

Table 2.4-1 (Continued)

QUALITY FACTOR RATING EXPLANATION RATING GUIDELINES

INTEROPERA-
BILITY* Rating Is in terms of the effort RATING .2 .3 .75 .9

required to couple the system to -
another system. % OF s0 o 0 23 10

"EFFORT
Rating a I-Egort to Modify TO BUILD

Effort to Build

EXPANDABILITY* Rating is in terms of the effort RATING .4 . .6 .7
to increase software capability,
performnance and original devel- %OF 60 45 30 10
opment effort. EFFORT' TC DEVEL09

NOTES

ratings for these quality factors. These ratingis should be modified based on
data collected within a specific development environment. Data has not been

collected to support ratingls of the other quality factors

Indicates rating which might be considered current industry average.

2-27

Table 2.4-2 Quality Factor Rating Explanation

QUALITY RATING EXPLANATION

FACTOR (Guidelines Not Established)

CORRECTNESS The function which the software is to perform is incorrect. The

rating is in terms of effort required to implement the correct

function.

EFFICIENCY The software does not meet performance (speed, storage) require-

ments. The rating is in terms of effort required to modify

software to meet performance requirements.

INTEGRITY The software does not provide required security. The rating is in

terms of effort required to implement proper levels of security.

USABILITY There is a problem related to operation of the software, the user

interface, or the input/output. The rating is in terms of effort

required to improve human factors to acceptable level.

VERIFIABILITY The rating i5in terms of effort required to test changes or fixes.

SURVIVABILITY The rating is in terms of the number of survivability related errors

that occur after the start of formal testing.

2-28

Table 2.4-3 Quality Metrics Related to Factors

QUALITY

FACTOR METRICS ACRONYM*

CORRECTNESS COMPLETENESS CHECKLIST CP. I

PROCEDURE CONSISTENCY MEASURE CS.I

DATA CONSISTENCY MEASURE CS.2

DESIGN STRUCTURE MEASURE SI.1
STRUCTURED LANGUAGE OR PREPROCESSOR SI.2

DATA AND CONTROL FLOW COMPLEXITY

MEASURE 51.3

CODING SIMPLICITY MEASURE S.4

SCOPE OF FUNCTION MEASURE SP.I

CROSS REFERENCE TR.1

RELIABILITY ERROR TOLERANCE/CONTROL CHECKLISTS AM. I

IMPROPER INPUT DATA CHECKLIST AM.2

COMPUTATIONAL FAILURES CHECKLIST AM.3

HARDWARE FAULTS CHECKLIST AM.4

DEVICE ERROR CHECKLIST AM.5

COMMUNICATION ERRORS CHECKLIST AM.6

NODE/COMMUNICATIONS FAILURES AM.7

ACCURACY CHECKLIST AY.I

PROCEDURE CONSISTENCY MEASURE CS. I

DATA CONSISTENCY MEASURE CS.2

DESIGN STRUCTURE MEASURE SI,

STPUCTURED LANGUAGE OR PREPROCESSOR 51.2

DATA AND CONTROL FLOW COMPLEXITY

MEASURE SI.3

CODING SIMPLICITY MEASURE SI.4

EFFICIENCY PERFORMANCE REQUIREMENTS EF. I

ITERATIVE PROCESSING EFFICIENCY MEASURE EF.2

DATA USAGE EFFICIENCY MEASURE EF.3

STORAGE EFFICIENCY MEASURE EF.4

*Acronym references relate to definitions in Appendix C

2-29

Table 2.4-3 (Continued)

QUALITY

FACTOR METRICS ACRONYM*

INTEGRITY ACCESS CONTROL CHECKLIST SA.I

ACCESS AUDIT CHECKLIST SA.2

SYSTEM/DATA INDEPENDENCE CHECKLIST VR.I

USABILITY USER INPUT INTERFACE MEASURE CM.I

USER OUTPUT INTERFACE MEASURE CM.2

OPERABILITY CHECKLIST OP.I
TRAINING CHECKLIST TN.A

SYSTEM/DATA INDEPENDENCE CHECKLIST VR.I

MODULE TESTING MEASURE VS.I

INTEGRATION TESTING MEASURE VS.2
SYSTEM TESTING MEASURE VS.3

SURVIVABILITY ERROR TOLERANCE/CONTROL CHECKLIST AM.A

IMPROPER INPUT DATA CHECKLIST AM.2

COMPUTATIONAL FAILURES CHECKLIST AM.3
HARDWARE FAULTS CHECKLIST AM.4

DEVICE ERRORS CHECKLIST AM.5

COMMUNICATION ERRORS CHECKLIST AM.6

NODE/COMMUNICATIONS FAILURES CHECKLIST AM.7

INTERFACE COMPLEXITY MEASURE AU.1

SELF-SUFFICIENCY CHECKLIST AU.2

DESIGN STRUCTURE CHECKLIST DI.1

MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO.3

RESTRUCTURE CHECKLIST RE.1

MAINTAINABILITY HALSTEAD'S MEASURE CO. I

PROCEDURE CONSISTENCY MEASURE CS.I

*Acronym references relate to definitions in Appendix C

2-30

ro

Table 2.4-3 (Continued)

QUALITY
FACTOR METRICS ACRONYM*

MAINTAINABILITY DATA CONSISTENCY MEASURE CS.2

(continued) MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO.3
QUANTITY OF COMMENTS SDl1
EFFECTIVENESS OF COMMENTS MEASURE SD.2

DESCRIPTIVENESS OF LANGUAGE MEASURE SD.3

DESIGN STRUCTURE MEASURE SI.1
STRUCTURED LANGUAGE OR PREPROCESSOR SI.2

DATA AND CONTROL FLOW COMPLEXITY

MEASURE SI.3

CODING SIMPLICITY MEASURE SI.4
MODULE TESTING MEASURE VS.I
INTEGRATION TESTING MEASURE VS.2

SYSTEM TESTING MEASURE VS.3

VERIFIABILITY MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO.3
QUANTITY'OF COMMENTS SD.,
EFFECTIVENESS OF COMMENTS MEASURE SD.2
:EF". .TIVENESS OF IMPLEMENTATION

"LANGUAGE MEASURE SD.3

DESIGN STRUCTURE MEASURE S1.1
STRUCTURED LANGUAGE OR PREPROCESSOR 51.2
DATA CONTROL FLOW COMPLEXITY

ME^SURE SI.3
CODING SIMPLICITY MEASURE SI.4
SCOPE OF FUNCTION MEASURE SP.l

MODULE TESTING MEASURE VS.1

*Acronym references relate to definitions in Appendix C

2-31

Table 2.4-3 (Continued)

QUALITY

FACTOR METRICS kCRONYM*

VERIFIABILITY INTEGRATION TESTING MEASURE VS.2

(continued) SYSTEM TESTING MEASURE VS.3

FLEXIBILITY MODULE REFERENCE BY OTHER MODULES GE,

IMPLEMENTATION FOR GENERALITY CHECKLIST GE.2

MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO,3

QUANTITY OF COMMENTS SD.I

EFFECTIVENESS OF COMMENTS MEASURE SD.2

DESCRIPTIVENESS OF LANGUAGE MEASURE SD.3

DESIGN STRUCTURE MEASURE SI.l

STRUCTURED LANGUAGE OR PREPROCESSOR SI.2

DATA AND CONTROL FLOW COMPLEXITY

MEASURE SI.3
CODING SIMPLICITY MEASURE S.4

PORTABILITY SOFTWARE SYSTEM INDEPENDENCE MEASURE ID.1

MACHINE INDEPENDENCE MEASURE ID.2

MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO.3

QUANTITY OF COMMENTS SD.I

"EFFECTIVENESS OF COMMENTS MEASURE SD.2

DESCRIPTIVENESS OF LANGUAGE MEASURE S0.3

REUSABILITY DATA BASE SYSTEM INDEPENDENCE AI.1

DATA STRUCTURE A1.2

ARCHITECTURE STANDARDIZATION AI.3

MICROCODE 1NDEPENDENCE AI.4

ALGORITHM AI.5

ACCESS NO-CONTROL DA.I

*Acronym references relate to definitions in Appendix C

2-32

-.--_--_-

Table 2.4-3 (Continued)

QUALITY

FACTOR METRICS NCRONYM*

REUSABILITY WELL-STRUCTURED DOCUMENTATION DA.2

(continued) SELECTIVE USABILITY DA.3

FUNCTION SPECIFICITY FS.I

FUNCTION COMMONALITY FS.2

FUNCTION COMPLETENESS FS.3

MODULE REFERENCE BY OTHER MODULES GE.I

IMPLEMENTATION FOR GENERALITY CHECKLIS7 GE.2

SOFTWARE SYSTEM INDEPENDENCE ID.1

MACHINE INDEPENDENCE 0.2

MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO.3

INTERFACE COMPLEXITY SC.I

PROGRAM FLOW COMPLEXITY SC.2

APPLICATION FUNCTIONAL COMPLEXITY SC.3

COMMUNICATION COMPLEXITY SC.4

SIRUCTURE CLARITY SC.5

QUANTITY OF COMMENTS SD.I

EFFECTIVENESS OF COMMENTS MEASURE SD.2

DESCRIPTIVENESS OF LANGUAGE MEASURE SD.3

DESIGN STRUCTURE MEASURE SI.l

STRUCTURED LANGUAGE OR PREPROCESSOR SL2

DATA AND CONTROL FLOW COMPLEXITY

MEASURE 51.3

CODING SIMPLICITY MEASURE SI.4

INTEROPERABI- DATA STORAGE EXPANSION MEASURE AG.A

LITY COMPUTATIONAL EXTENSIBILITY MEASURE AG.2

CHANNEL EXTENSIBILITY MEASURE AG.3

DESIGN EXTENSIBILITY CHECKLIST AG.A

*Acronym references relate to definitions in Appeneix C

2-33

Table 2.4-3 (Continued)

QUALITY

FACTOR METRICS ACRONYM*

INTEROPERABI- COMMUNICATION COMMONALITY CHECKLIST CL. I

LITY DATA COMMONALITY CHECKLIST CL.2

(continued) COMMON VOCABULARY CHECKLIST CL.3

USER INPUT INTERFACE MEASURE CM.2

USER OUTPUT INTERFACE MEASURE CM.2

FUNCTIONAL OVERLAP MEASURE FO.I

SOFTWARE SYSTEM INDEPENDENCE MEASURE ID. I

MACHINE INDEPENDENCE MEASURE ID.2

MODULAR IMPLEMENTATION MEASURE MO.2

MODULAR DESIGN MEASURE MO,3

COMMUNICATIONS COMPATIBILITY CHECKLIST SY.I

DATA COMPATIBILITY CHECKLIST SY.2

SHARDWARE COMPATIBILITY CHECKLIST SY.3

SOFTWARE COMPATIBILITY CHECKLIST SY.4

DOCUMENTATION FOR OTHER SYSTEM SY.5

EXPANDABILITY DATA STORAGE EXPANSION MEASURE AG.1

COMPUTATION EXTENSIBILITY MEASURE AG.2

CHANNEL EXTENSIBILITY MEASURE AG.3 1.1

DESIGN EXTENSIBILITY CHECKLIST AG.4

MODULE REFERENCE BY OTHER MODULES GE. I

IMPLEMENTATION FOR GENERALITY CHECKLIST GE.2

MODULAR IMPLEMENTATION MEASURE MO,2

MODULAR DESIGN MEASURE MO.3

DESIGN STRUCTURE MEASURE S1.l
STRUCTURED LANGUAGE OR PREPROCESSOR S4,2

DATA AND CONTROL FLOW COMPLEXITY SI.3

CODING SIMPLICITY MEASURE SI,4

SCOPE OF FUNCTION MEASURE SP.l

SYSTEM/DATA INDEPENDENCE CHECKLIST VR.1

*Acronym references relate to definitions in Appendix C

2 -34

2.4.2 Example of Metrics

Using the example of paragraph 2.2.2, the quality ratings would be specified as follows.

3a. Scilfic Oualty Factor Ratings
Ratings for two of the five important quality factors cani be established usLk

Table 2.4-1.

Reliability .99 Require less than one error per 100 lines of code to be

detected during formal testing.

Maintainability .8 Require le-s than or equal to 2 man days as an average

level of maintenance for correcting an error.

These ratings can also be established at each measurement period (see Table 3.1-1)
during the software development process as follows:

MEASUREMENT PERIODS

QUALITY
PFACTOR REO POR CDR IMPL ACCEPT
Reliability . .8 .9 .9 .99
Maintainability .7 .7 .8 .8 .8

The progressively better scores are required because there is more detailed

Information in the later phases of the development to which to apply the metrics
and more confidence in the metrics' indication of quality. This is analagous to the

concept of reliability growth. For other quality factors see step 3b.

3b. Identify Soecific Metrics to be Applied
The metrics to be applied to assess the level of each important quality factor

are chosen from Table 2.4-3. A subset is shown in Table 2.4-4.

2-35

- - -. . . .~

Table 2.4-4 Software Metric to Factor Relationship-Subset

QUALITY FACTOR

Rel- Main- Cor- Usa- Int -
labi- tain - rect- bil - erop-
lity abil - ne" ity era-

ity bil -
METRIC ity

Accuracy Checklist X
Error Tolerance Checklist X

Complexity Measure X X
Coding Simplicity Measure X X
Modular Implementation Measure X

Quantity of Comments X
Effectiveness of Comments x

Cross Reference Checklist X
Completeness Checklist X
Halstead's Measure X
Data Consistency Measure X X 0

User Input Interface Measure x x
Communications Commonality x
Data Commonality Checklist X

Documentation for Other Systems x

2-36

3c. Specify Threshold VAlues
The following threshod values are established based on past experience and to

provide a goal for the -quality factors that were not given ratings. They were

derived by determining the average scores of past applications of the metrics.

Cross Reference Checklist .9
Completeness Checklist 1 .0

UHalstead's Measure .9

Data Consistency Measure .6
Training Checklist . 75

User Input Interface Measure .7

User Output Interface Measure .75

Communications Commonality .8

Data Commonality Checklist .8

2.5 EVALUATION OF DEVE' OPMENT PLAN

In an acquisition environment the initial benefits of utilizing the quality metrics concepts

are realized in the source selection process. The acquisition office should include the '

quality goals established as software requirements in the Request for Proposal. The
software attributes should also be identified as required characteristics in the software

and the metrics established as the vehicles for assessing their existence. The bidders
should be required to describe how they plan to provide those characteristics in the

software. This discussion should be provided in the portion of the proposal that describes
their development plan.

The description of the bidders approach for including the required attributes in the

software not only forces acknowledgement of these additional requirements but also
provides additional information with which to evaluate the bidders during source selec-

tion.

2-37

SECTION 3
APPLYING METRICS

3.1 WHEN To TAKE MEASUREMENTS

The software quality metrics are oriented toward the availability of information about the

software system as it progresses in its development. In the early phases of the

development, the metrics are applied to the documentation produced to descrbe the

concepts of the system and its design. In the later phases the metrics are oriented notj

on.~y to documentation but also to the source code that is available.j

Thus, the application of the metrics logically follows the phased development of sof tware.

The first application of the metric is at the end of the requirements analysis phase. TheI

next application is during design. If the design phase has been decomposed into a

preliminary dasign phase and a detailed design phase, the metrics should be applied at the

end of each of those phases. During implementation, i.e., coding, the metrics oriented

toward the source code should be applied periodically to assess the quality growth

exhibited as the code evolves. The timing of the application of the metrics is shown in

Figure 3.1-1. The application of the metrics can be done during or just prior to formal

customer reviews (as shown in Figure 3.1-1) or during equivalent activities conducted by
the development personnel.

In the case of reusable software, metrics may already exist fromn being applied during a

previous project. Other metrics may change when re-evaluated later in the life-cycle,

e.g., during maintenance. Maintainability, reliability and expandability factors may be re-

evaluated as maintenance and upgrade activities occurred for fielded systems.

3-1

~PROGRAMMING
REQUIREMENTS DESIGN AND TEST
ANALYSIS _CECKOUT INTEGRATION

REQUIREMENT
REVIEW PERIODIC

APPLICATION

DURING

CODING
AND
TESTING

PRELIMINARY

DESIGN

REVIEW

CRITICAL

DESIGN

REVIEW

VALIDATION F
i: ~AND

ACCEPTANCE
TEST

REVIEW

ACCEPTANCE

Figure 3.1-I Timing (A Metrics Application

3-2

_M

3.2 SOURCES OF QUALITY INFORMATION

A typical minimum set of documents and source code are shown in Figure 3.2-1. These
documents plus the source code are the sources of the metrics information used to derive

the quality ratings.

3-3

-- -- ~

SPRELIM- PROGRAMMING TEST
REQUIREMENTS INARY DETAILED AND AND
ANALYSIS DESIGN DESIGN CHECKOUT INTEGRATION

REQUIREMENTS

SPEC * PRELIMINARY A
DESIGN * DETAILED

e SPEC DESIGN 0 SOURCE CODE

USER'S MAN- SPEC DETAILED * TEST

UAL (DRAFT) 0 TEST PLAN e DESIGN RESULTS

AND SPEC
PROCEDURES (UPDATED) e USER'S

MANUAL

(FINAL)

Figure 3.2-1: Sources of Quality Metric Data

3-4

3.3 APPLICATION OF THE METRICS

Application of the metrics can be accomplished by using: the metric worksheet contained
in Appendix A for gathering data, the metric tables in Appendix B to translate the

measurements into metric scores and the data in Appendix C for definItions and

interpretations of individual metrics.

The metric worksheets are organized ?is follows. In the header portion of the worksheet is
the information which (1) identifies the phase during which the worksheet is initially used

and the level (system or module) to which the worksheet applies, (2) identifies the system[and the module to which the worksheet has been applied, and (3) identifies the date and

the inspector who took the measurements. The remaining portion of each worksheet

contains the measurements to be taken and questions to be answered. These measure-
ments and questions are organized by quality factors identified in parentheses. EachI logical group of measurements and qu'e!tions have a group identifier and group number.
Each question contains a reference to the applicable metric.

When applying the measurements. only those measurements and questions that relate to

the quality factors chosen as quality goals should be applied. A complete metric

worksheet correlation matrix is shown in Table 3.3.1. The metric worksheet correlation

matrix provides a quality factor to metric relationship. It also provides an individual

metric to metric worksheet relationship.

Metric Worksheet #1 and #2 contain system level metrics and are applied at the system or

major subsystem (CPCI) level to the System Requirements Specification, the Preliminary
Design Specification, the User's Manual, and the Test documentation. Metric Worksheets

#3 and #4 contain module level metrics and are applied to each module's design (Detailed
Design Specification) and implementation (source code).

The metric tables in Appendix B are utilized to translate the raw data from the metric

worksheets into individual metric scores. The metric tables in Appendix B are listed

alphabetically by quality criteria. The metric tables are arranged as follows. In the

header portion of the table is a reference to the quality criteria and the quality factors.
The body of the table contains the instructions for computing individual metric scores

with a reference to the metric worksheet that the raw data may be obtained from.

3-5

Table 3.3-1 mitic woamrnlrr coouLnm.
QUALITY FACTOIS pNAsts

LY, IL] 3.|o.1
R;.4 2.2

AM.1 1.2 2.6 3.6 (3.21.4.1 2

Am. 36 2.6 3.6 4.244 2.6
AN.3 1.6 . 3.2 4.11 2.

*M.4 1.2 2.2 2.6
AN. 1.2 2.7 2.7
ML.6 1.? 2. . 2.7
AM 1.2 2.7 2.7

x APPL ICATION

A1.1 1.5 3.5 Z.1A1.2 2.8 4.1.4.9 2.8
Al.3 2.5 4.1 2.5
A..4 2.9 2.[AI.S 2.6 3.S 4.6 2.S

x I AUrG•vT-

A.1 1.6 2.6 3.6 (3.6),4.6 2A.Ara.2 1.6 2.6 3.6 4.6.4.11 2.1
AG.3 1.4 2.6 3.6 4.11 2.6
AG.4 1.6 2.6 2.6

1 AUTONO S
AC.1 1.7 2.7 3.7 4.7.4.11 Z.7
f S.2 1.7 2.7 3 3.7

x MI0STT-CL.I 1 2.7 2.7
01.2 1.7 2.7 2.7C..3 1.10

Ix C.ONMMIC:ATIVE-

NESS
C".1 1.9 Z.9 1.t

OA.2 1.11 .91.

x CV1PI.LTXENSS
7P.3 1.4 2.4 3.4 (3.4) .2.

x CONCISENE.xSS
4.91 4.4

x x x CONSISTENCY
CS.1 3.8 (3.8)

CS.4 2 z.3 3.8 (3.81,4.,9 2.8

01.1 1.1.1.8 2.1,.4 3.1 . 1

x OUMFNC TACCESS1I1. ITT
DA.1 1.11

3A.2 1.11OA.3 1.11 4.6

SE'FFECTIVENESS
EF.1 1.3 2.3 3.3
EF.2. 2.3 3.3 4,3,4.11 2.3
Er.3 2.3 3.33 (3.3i i.3. 1.3

4.9, 4.11
E.F.4 2.3 4.3.4.9, Z.3

4.11

x FUNCTIONAL
OVE[RLAP

FO.1 1.13

3-6

Table 3.3-1 m zc mmn convTI (continued)

SALZI? ?*lS PhIll

x FUNCTIONAL

s~Iq

rsia 3.1 4.6

FS.2 1.5 4.7
FS.3 1.5

I I QNERALITY

3.6 L"GI.2 3.6 4.6

2 2t 1 INP)IO EINCE
10.1 3.5 4.5.4.101o.2 3.s !(3.5).4.7

4.10

0.x I I I I I I(O3.5A4I.TY
"N0.2 LI 3.S (3.5)4.5
NO.3 1.1 2.1 3.1

I OPERABILITY
OP.1 1.9 L29 2.9

X RECONFIVAt*

AliLITY
It[. 1.7.1.8 2.7,2.8 2.7.2.8

x I I SELF-
DISCRIPTIVENESS

SO.) 4.8
SO.? 4.8,4.9
$0.3 4.8

I x I x I I SIMPLICITY
S1.1 1.1 2.1.2.8 3.1 4.1 2.1,2.8
SI.2 4.1
SI.3 3.1 4.1
SI.4 1.1 3.1 4.1,4.9

2 2 I SPECIFICITY
SP.1 3.1

I STSTDI
ACCESSIBILY'Y

SA. 1 1.12 2.12 2.12
SA.2 1.12 2.12 2.12

x SYSTEM CLARITY
SC.1 4.1
SC.2 4.1
SC.3 2.1 4.1 2.1
SC.4 4.1
SC.5 4.1

2 SYST'
CNFPATISILITY

SY.1 2.11 2.11
Sf.2 2.11 2.11
!Y.3 2.11
WV.4 2.11
SYS 1.11

TRACEABILITY
TR.1 1.4 2.4 3.4

2 ThRAIING
TN.1 2.9 2.9

I 2 VIRTUALITY
Y.l 1 1.8 2.1. 2.8 2.1.2.8

x x I VI$S1BILIT'YVS. 1 2.10 2.10
VS.2 2.10 2.10

VS.3 2.10 2.10

() - IaaWpL±tttau ,f D.twet fUtiM Sub@q*amat Pbee.

3-7

; j4'-..mp~~a~

Definitions and interpretations of the individual measurements contained in the work-

sheets are found in Appendix C.

As shown in Figure 3.3-1, the worksheets may be applitd several times during the

development. For example, Metric Worksheet #3, which is applied for each module to the

detailed design document during dieign, is also applied to the detailed design document

after it has been updated to reflect the actual implementation. The worksheet does not

have to be totally reapplied for each successive application. It should only involve

updates to reflect the changes made to the system since the previous application of the

worksheet. The successive applications of any worksheet should require considerably less

effort than the original application.

Worksheet Requirements Preliminary I Detailed I f Test and
Number Analysis Design Design Implementation J Integration

Requirements
I Spec S. ... n n - suao.UUS.U..SUmf m..sa....eussswmss

Preliminary Preliminary Test
Design Spec Design Spec, ! Results

Users Manual Users Manual : Users Manual

(Draft) , (Draft) j (Final)
na" E eouoaao ON a* SO. s4aoaauwa Sm0aaaaea

Detail " Detail
Design Spec } Design Spec

Test Plans • Test Plans
&Procedures & Procedures

Source Code
4

Detail Design
Spec (Updated)

I st Application
- - ---- Reapplication

Figure 3.3-1 Application of the Metric Worksheets

3-8

3.4 TECHNIQUES FOR APPLYING METRICS

Section 1.5 identified organizational approaches for utilizing the quality metric concepts

during software development. These approaches included both acquisition environments

and internal development environments. The purpose of this section is to descrLbe, at a

lower level, how the metrics would be applied in either case.

The first technique for applying the metrics is by formal inspection. The formal

inspection is performed by personnel of an organization independent of the development

organization (the acquisition office, an independent quaJlty assurance group, or an

independent IV&V contractor). The metric worksheets are applied to delivered products

at scheduled times and the results are formally reported.

The second technique is to utilize the worksheets during structured design and code

walkthroughs held by the development team. A specific participant of the walkthrough

can be designated to apply the worksheets and report any deficiencies during the

walkthrough, or a quality assurance person can participate in the walkthroughs to take the

measurements of the design or code.

The last technique is for the development team to utilize the worksheets as guidelines,

self-evaluations cr in a peer review mode to evaluate or enhance the quality of the

products they produce.

3-9

SECTION 4
ASSESSING THE QUALITY OF THE SOFTWARE PRODUCT

4.1 INTRODUCTION

The benefits of applying the software quality metrics are realized when the information

gained from their application is analyred. The analyses that can be done are described in

the subsequent paragraphs. There are three levels at whicn analyses can be performed.

These levels are related to the level of detail to which the evaluating organization wishes

to go in order to arrive at a quality assessment.

4,2 INSPECTOR'S ASSESSMENT

The first level at which an assessment can be made relies on the discipline and

consistency introduced by the application of the worksheets. An inspector, using the

worksheets, asks the same questions and takes the same counts for each module's source
code or design docurrier,, -tc. that is reviewed. Based on this consistent evaluation, a

subjective comparison of products can be made.

I a. Document lnspector's Assessment

The last section irt each worksheet is for the inspector to make comments on

the quality observed while applying the worksheet. Comments should indicate

an overall assessment as well as point out 1)articular Droblem areas such as

lack of comments, inefficiencies in implemneltation, or overly complex control

flow.

lb. Compile Assessments for System Review

By compiling all of the inspector's assessments on the various documents and

source code available at any time during the development, deficiencies can be

identified.

4-I

S.. . .• "

Flo"",.-.,'-~~--~-----

4.3 SENSITIVITY ANALYSIS

The second level of detail utilizes experience gained through the application of metric$

and the accumulation of historical information to take advantage of the quantitative

nature of the metrics. The values of the measurements are used as indicators for

evaluation of the progress toward the high quality goals or requirements.

At appropriate times during a large-scale development, the application of the worksheets

allows calculation of the metrics. The correspondence of the worksheets to the metrics is

shown in Appendix B. The results of these calculations is a matrix of measurements. The

metrics that have been established to date are at two levels, system level and module

level. The approach described is for the module level metrics however it is applicable to

both levels.

A n by k matrix of measurements results from the application of the metrics to the

existing products (e.g., at design, the products might include review material, design

specifications, test plans, etc.) where there are k modules and n module level measure-

r Il 1 .. l

mnl mnk

This matrix represents a prlufile of all the modules in the system with respect to a number

of characteristics measured by the metrics. The analyses that can be performed are

described in the following steps:

2a. Assess Variation of Measurements
Each row in the above matrix represents how each module in the system

scored with respect to a particular metric. By summing all the values and
calculating the average and standard dev iation for that metric, each individual
module's score can then be compared with the average. TPhose modules that

score more than one standard deviation below the average should be reported
for further examination. These calculations are illustrated below:

14- 2

k
for metric 1; Average Score = Al = r Mijl/k

i-i

Standard Deviation = Oi (Mii-.Ai)2/k)

Report Module j if Mij< Ai -U

2b. Assess Low System Scores

In examining a particular measure across all modules, consistently low scores

may exist. It may be that a design or implementation technique used widely

by the development team was the cause. This situation indicates the need for

a new standard or stricter enforcement of existing standards to improve the
overall development ef fort.

2c. Assess Scores Ayainst Thresholds

As experience is gained with the metrics and data is accumulated, threshold

values, or industry acceptable limits, may be established. The scores, for each

module for a particular metric should be compared with the established

threshold. A simple example is the percent of comments per line of source

code. Certainly code which exhibits only one or two percent rneasurements
for this metric would be identified for corrective action. It may be that ten

percent is a minimum acceptable level. Another example is the complexity

measure. A specific value of the complexity measure greater than some

chosen value should be reported for corrective action. •

Report Module j if Mij < Ti

Where Ti threshold val'ie specified for metric i.

4-3

4.4 USE OF NORMALIZATION FUNCTION TO ASSESS QUALITY

The last level of assessing quality is using the normalization functions to predict the

quality in quantitative terms. The normalization functions are utilized in the following
manner.

At a particular time in the development process there is an associated matrix of

coefficients which represent the results of linear multivariate regression analyses against
empirical data (past software developments). These coefficients, when multiplied by thie
measurement matrix results in an evaluation (prediction) of the quality of the product

based on the development to date. This coefficient matrix, shown below, has n columns
for the coefficients of the various metrics and 13 rows for the 13 quality factors.

c I c 12 Cl'

C c

L13,1 lc 3,n

To evaluate the current degree or level of a particular quality factor, i, for a module, j,
the particular column in the measurement matrix is multiplied by the row in the

coefficient matrix. The resultant value:

r. = 1 m + .c i, i~j i,2 2,j .. i,n rn'j
is the current predicted rating of that module, jfor the quality factor, i. This predicted

at least as sufficient as required. The coefficient matrix should be relatively sparse

(many C =0). Only subsets of the entire set of metrics applicable at any one time
relates to the criteria of any particular quality factor.

iMultiplying the complete measurement matrix by the coefficient matrix results in a
ratings matrix. This matrix contains the current predicted ratings of each module for

each quality factor. Each module then can be compared with the preset rating for each

quality factor.

4-4

r 1,1 r1,2 * r I,k

CM=R I

This represents the most for mal approach to evaluating the quality of a product utilizing

the software quality metrics. Because the coefficient matrix has been developed only for 1
a limited sample in a particular environment, it is neither generally applicable nor has
statistical confidence in itt vaLlue been achieved.

To use the normalization functions that currently exist, the following steps should be
performed.

3a. Apply Normalization Functlon
Table 4~.4-1 contains the normalization functions that currently exist. If any
of the quality factors identified in that table have been specified as a
requirement, then the metrics identified in the table should be substituted into
the equation and the predicted rating calculated. Normalization functions
which include several metrics can be used if available, otherwise functions for
individual metrics shouldl. be used. This predicted rating should be compared
with the specified rating.

To illustrate the procedure, the normalization function that has been deve-

loped for the factor Flexibility will be used. The normalization function,
appticable during the design phase, relates measures of modular implementa-
tion (MO.2) to the flexibility of the software. The predicted rating of

flexibility is in terms of the average time to implement a change in
specifications. The normalization function is shown in Figure 4.4-1. The
measurements associated with the modular implementation metric are taken
from design documents. The measurements involve identi~ving if input, outputt
and processing functions are mixed in the same module, if application and
machine-dependent functions are mixed in the same module and if processing
is data volume limited. As an example, assume the measurements were
applied during the design phase and a value of 0.65 was measured. Inserting
this value in the normalization function results in a predicted rating for

flexibility of .33 (.51 x .65) as identified by point A in Figure 4.4-1. If the

4-5

Acquisition Manager had specified a rating of 0.2, which is identified by point

B, he has an indication that the software development is progressing well with

respect to this desired quality.

An organization using this manual is encouraged to establish these functions in

its specific environment by following the procedures described in (MCCA77),

(MCCA8O), or Volume I of this report.

4-6

Table 4.4-1 Normalization Functions

7ELIABILITY (DESIGN)

MULTIVARIATE .18 MAMI .19 MS, 3
FUNCTION I___I__ _ I__ ___IIII _____

INDIVIDUAL .34 MAM. I AM. 1 Error Tolerance/Control Checklist
FUNCTIONS .34 M S;.3 Data and Control Flow Complexity

Measure

RELIABILITY (IMPLEMENTATION)

MULTIVARIATE .4" MAM. 1 + .14MSI.

FUNCTION

INDIVIDUAL .57 MAM. I AM.A Error Tolerance/Control Checklist
FUNCTIONS .58 MSI" 1 SI.l Design Structure Measure

.53 M SI.3 Data and Control Flow

.53 MSI . 4 Complexity Measure
SI.4 Coding Simplicity Measure

MAINTAINABILITY (DESIGN)

INDIVIDUAL .57 MS1 3 SI.3 Data and Control Flow
FUNCTIONS Complexity Measure

.53 MSI l SI.i Design Structure Measure

4-7--

Table 4.4-1 (Continued)

MAINTAINABILITY (IMPLEMENTATION)

MULTIVARIATE -. &+.61 MSI3 . 4MMo.2+ 3SD.2
FUNCTION

INDIVIDUAL SI.3 Data and Control Flow

FUNCTIONS Complexity Measure
2.1 MS1. 3 MO.2 Modular Implementation Measure

.71 MSD.2 SD.2 Effectiveness of Comments

.6 MSD3 Measure

.5 M S. 1 SD.3 Descriptiveness of Language

.4 MSI. Measure

S1.1 Design Structure Measure

51.4 Coding Simplicity Measure

FLEXIBILITY (DESIGN)

INDIVIDUAL .51 MMO" 2 MO.2 Modular Implementation Measure

FUNCTIONS .56 MGE.2 GE.2 Implementation for Generality

'Checklist

FLEXIBILITY (IMPLEMENTATION)

MULTIVARIATE . 2 2 MMo 2 + . 4 4 MGE2 + "09 MsD 3

FUNCTION

INDIVIDUAL

FUNCTIONS .6 MMO. 2 MO.2 Modular Implementation Measure

. 72 MGE. 2 GE.2 Implementation for Generality

.59 MSD. 2 Checklist

.56 MSD. 3 SD.2 Effectiveness of Comments

Measure

SD.3 Descriptiveness of Language

Measure

4-8

Table 4.4-I (Continued)

PORTABILITY (IMPLEMENTATION)

'MULTIVARIATE -1.7 + .I 9 MSD. I + .7 6 MSD.2 + 2.5MsD.3 + , 6 4MID. 2
FUNCTION

INDIVIDUAL

FUNCTIONS 1.07 M SD.I Quantity of Comments

I. 1 MID 1 SD.2 Effectiveness of Comments

1.5 MSD.2 Measure

SD.3 Descriptiveness of Language

MeasureI_!D.2 Machine Independence Measure
,.S.ý 1. 1Design Structure Measure_

REUSABILITY

"MULTIVARIATE .13 + .29 MS1.1 + .08 MsI 3

FUNCTIONS .10 .0 8 MSD + . 9 MsD, 3 + .07M 5i 3

.11 + .0 4 MFSI + .0 6 MSD.I + .1 6 MSD. 3 .07MsI.3
•i; + .0 3 MFS. I + 04MSc 4 + .0 6 MSD.I + .14M 5D.3

+ .06Ms I.I
S- - _ _ _ _ __....

INDIVIDUAL

FUNCTIONS .22 4 . 12 * MFS. I FS.I Function Specificity

.05 + .28 * MGE2 GE.2 Implementation for Generality

.14 + .17 * MID. 2 Checklist

.20 + .19 * MMO. 2 ID.2 Machine Independence Measure

. 18 + .21 * MSC. MO.2 Modular Implementation Measure

.22 + .14 * MSC. 2 SC.l Interface Complexity

.14 + .24 * MSC. 4 SC.2 Program Flow Complexity

.23 * .16 * MSD.I SC.4 Communication Complexity

.01 + .36 * MSD,3 SD.I Quantity of Comments

.10O + ..37 * MSI".1 SD.3 Descriptiveness of Language

.26 + .13 * MSI. 3 Measure

4-9

Table 4.4-1 (Continued)

14 .56 * MSI 4 SU.1 Design Structure Measure

S1.3 Data and Control Flow Complexity

Measure

51.4 Coding Simplicity Measure

4-10

-.-. --....-- -" •" " ' -,-.. " •-" "• "'"" 'i

.1
I.4

.31

.1 .3 .2 . 4 .A .6.I6 .7 . .t 1.

10.2 MWIAXa ILWNTCMATItO VAAUMhIKSIrA ROUM

Figure 4.4.1 Normalization Function for Flexibility During Design

4-11

3b. Calculate Confidence in Quality Assessment

Using statistical techniques a level of confidence can be calculated. The

calculation is based on the standard error of estimate for the normalization

function and can be derived from a normal curve table found in most statistics

texts. An example of the derivation process is shown in Figure 4.4-2 for the

situation de-cribed above. Here it is shown that the Acquisition Manager has

an 86 percent level of confidence that the flexibility of the system will be

better than the specified rating.

MEAN .33

(SPECIFIED RATING) .2

MEAN =.33 (PREDICTED RATING)

STANDARD DEVIATION =.12 (STANDARD ERROR OF ESTIMATE)

LEVEL OF CONFIDENCE =Pr [X>.2] =.86 (SHADED AREA)

Figure 4.4-2 Determination of Level of Confidence

4-12

REPORTING ASSESSMENT RESULTS

Each of the preceding steps described in this section are easily automated. If the metrics

ace applied automatically then the metric data is available in machine readable form. If

the worksheets are applied manually, then the data can be entered into a file, used to

calculate the metric, and formatted into the measurement matrix format. The automa-

tion of the analyses involve simple matrix manipulations. The results of the analyses

should be reported at various levels of detail. The formats of the reports are left to the

discretion of the implementing organization. The content of the reports to the different

managers is recommended in the following paragraphs.

la. Report to the Acquisition Manager/Develooment Manaxer

The report content to the Acquisition Manager and the Development Manager

should provide summary information about the progress of the development

toward the quality goals identified at the beginning of the project.

For example if ratings were specified for several qiiality factors, the current

predicted ratings should be reported.

PREDICTED RATING

QUALITY GOALS BASED ON DESIGN DOCUMENT

RELIABILITY .9 .8

MAINTAINABILITY .8 .95

If specific ratings were not identified but the important qualities were identified, a report

might describe the percentage of modules that currently are judged to be below the

average quality (as a result of the sensitivity analysis) or that are below a specified

threshold value (as a result of the threshold analysis,). These statistics provide a progress

status report to the manager. Further progress statcus is indicated by rep~orting the quality

growth of the system or of individual modules. The quality growth is depicted by

reporting the scores achieved during the various phases of development. Ultimately the

ratings should progressively score higher than those reported during the requirements

phase. This progress is based on the identification of problems in the early phases which

can then be corrected.

l b. Reports to Quality Assurance Manager

In addition to the summary quality progress reports described in I a, the quality

4-13

assurance manager and his staff will want detailed metric reports. These

reports will provide all of the results of the Analyses described in 4.2, 4.3, and
4.4, and perhaps provide the measurement matrix itself for examinations. In
addition to the detailed reports, the quality assurance manager should be
provided with reports on the status of the application of the metrics
themselves by the quality assurance staff. These status reports will provide
information on the total number of modules and the number which inspectors
have analyzed.

I Ic. Reports to the Development Tearn

The development team should be provided detailed information on an excep-
tion basis. This information is derived from the analyses. Examples of the

information would be quality problems that have been identified, which
characteristics or measurements of the software products are poor, and which
modules have been identified as requiring rework. These exception reports
should contain the details of why the assessment revealed them as potential
problems. It is based on this information that corrective actions will be taken.

4-14

REFERENCES

(MOCA77) McCall, 3., Richards, P., Walters, G., "Factors in Software Quality",

RADC-TR-77-369: Nov 1977, 3 Vols (A049014) (A049015) & (A0c#055).

(MCC. 80) McCall, 3., Matsumoto, M., "Software Quality Metrics Enhancements",

RADC-TR-80-109, April 1980.

(W.IN72) Weinberg, G., "The Psychology of Improved Programming Performance,"

DATAMATION, Nov 1972.

(CAVA78) Cavano, 3., McCall, 3., "A Framework for the Measurement of Software

Quality," Proceedings of the ACM Software Quality Assurance Workshop,

Nov 1978.

(DUVA76) Duval!, L.M., "Software Data Repository Study," RADC-TR-76-387, Dec 76,

(A050636).

(POST82) Post, 3.V., "The Role of Measurements in the Software Development Process",

Proceeding COMSAC-82 (IEEE Computer Society Sixth International Com-

puter Software and Applications Conference) Chicago, November 1982.

4-15

APPENDIX A

METRIC WORKSHEETS

Appendix A contains the metric worksheets which are used to gather metric data

during the software development phases. There are four worksheets, organized by

applicable phase:

Worksheet I - Requirements Analysis

Worksheet 2 - Preliminary Design

Worksheet 3 - Detailed Design

Worksheet 4 - Source Code

A summary of the worksheets is shown on the next page. Each worksheet is divided
into sections of related questions to ease the data gathering task. The applicable
metric element is referenced by acronym at the end of each worksheet question.

Appendix B, Metric Tables, lists the formula to be used in calculating values for
metrics and metric elements.

The contents of this appendix are based on the results of this contract, "Quality

Metrics for Distributed Systems", F30602-80-C-0330 and the results of contract
F30602-80-C-0265, "Software Interoperability and Reusability". This appendix includes jj
a refinement and reorganization of worksheet information initially defined in

RADC-TR-77-369 and RADC-TR-80-109.

A-I

4K-3

%d on -W

3ML.3 43
U A j ,

x

r2 I.? ~ -

a.-19~

0; rN * CC6 C6 w to ~

*-'- Wi~ ~A-22

MAETRIC W•ORKSHEETr I SYSTF..Ms D. . ATEF: ,

REOUI4RELAENTS ANALYSIS/SYITEM LEVE NA!ME INSPECTOR:

1-1 STrRUCTURJE (RELIAB•ILITY, MAINTrAINABL.ATY, VERIF'IABILITY, FLEXIBILITY, REUSABtLn"

EXPANDABILITY, SM. VIVABIL.ITY, PORTABILITY, INTEROPERABILITY, CORRECTrNESS)

1. is an organization of the system/network provided which identifies all software fuic-

tions and functional interfaces in the system? 01.10() YN

2. Number of major functions. SI.1(2)
3. Are there no duplicate functions? SI.I(2) Y

4. Is there a definitive statement of the requirements for the distibution of information

within the data base? 01.1 () Y.N

5. Is there an organization of the data base provided which identifies the types of system-

level information and the information flow within the system? DL (2)Y N
6. Is there a definitive statement of requirements for code to be written according to a pro-

gramming standard? SI.t(13) Y]N
7. Is there a definittve statement of requirements for processes, functions, and modules to

have loose coupling? M0O.3(0) YIN
S. Is there a definitive statement of requirements for processes, functions, and modules to

have high cohesion? MO.3(2) Y N

1.2 TOLERAN:E (RELIABILITY, SURVIVABILITY)

I, Has an error analysis been performed and budgeted to functions? AY.l() N

2. Are there definitive statements of the accuracy requirements for inputs, outputs

ptocessing, and constants? AY.l(2)YN
3. Are there definitive statements of the error tolerance of input data? A.M.2() Y N
4. Are thee definitivc statements of the requirements for recovery from computa-

tional failures? AM.3() N
5. Is there a definitive statement of the requirement for recovery from hardware

faults? AM.() Y N
6. Is there a definitive statement of the requirements for recovery from device

errors? AM.0() Y N
7. Are there definitive statements of the requirements for recovery from communication

errors? AM.6() Y N

A-3

~~ "..

I kAETRIC WORKSHEET I SYSTE-M: 0A. . T DAE .. .

REQUIREMENTS ANALYSIS/SYSTEM ,LEVEL NAMEt INSPECTOR: • ,

S. Are there definitive statements of the requirements for system recovery from node
or communication .ailures? AMM7(O Y N

1.3 PERFORMANCE (EFFICIENCY)

I. Have performance requirements ana limitations (flow time for process, including execu-

tion and communication; storage) been specified for the functions to be performed? EF.l(l) Y N

1.4 COMPLETENESS (CORRECTNESS)

I. Is there a matrix relaxng itemized r.quirements to major functions which implement

those requirements? TR.L(I) Y

2. Number of major functions identified (eqt.i.,alent to CP•1). CP.AI

3. Are requirements itemized so that the various functions to be performed, their inputs

and outputs, are clearly delineated? ClP.1(W)
4. Number of major data references. CP.1(2)

5. How many of these data references arcý not defined? CP.l(2)
6. How many defined functions are not used? CP.l(3)

7. How many referenced functions are not defined? CP.l(4)

8. How many data references are not used? CF,•l(2)

9. How many referenced data references are noi defined? CP.1(6)

10. Is the flow of processing and ali'decision points in that flow described. CP.i(5)

11. How many problem reports related to the requirements v.: been recorded? CP.1(7) i
12. How many of those problem reports have been c!osed (r solved)? CP.1(7)

1.5 FUNCTIONAL SCOPE (REUSABILITY)

I. Is the function constructed in. such a way to encourage its use elsewhece either in
part or in total? FS.2(l) Y

2. Are the input quantities well defined? F5.2(2) Y N

3. Are the output well defined and easy to interpret? FS.2(4) rY
4. Do the functions performed satisfy one of the specified requirements? 7S.2(0)

5. Number of function requirements satisfied by the reusalle software? FS.3(l)

6. Total number of requirements? FS.3(l)

A-4

- ---------- -- ---. ~ ------ -

KSET ISYSTEM: A.TE:
RjF gNT ANAMP L YSS/YSE LEVEL]NAME: IINSPECTOR:

1.6 CI1A14r2ASUjrY (wrrEROPERABI.ITY, EXPANDABIUY)

I,,

I. Is there ., definitive statement of requirements for spare storage capacity (memory and
au\il~aryi storage)? AG.l(2,3) Y N

Ir

2. Is tt~ere a definiti,;e statement of requirements for spare processing capacity? AG.2(3) Y N .
3. Is there a defi.itjive statement of requirements for spare 1/0 and communication channel

capacity,? AG.3(i,2) Y N
4. Is there a definitive statemeint of requirements for interface compatibility a mong all the

processors, communication links, memory devices, "4d peripherals? AGMI() Y N
5. Is there a specific requirement for providing performance/price information for enhance-

ment traaes? AGAM(2 Y N
6. Do specifications idertify new technology tradeoff areas for software? AG.4()
7. Do ioftware specifications incILde requirements for the criteria of the quality factor

expendability? AG.4(4) YIN

1.7 SYS'M INTErACES (INTEROPERABILITY, SURVIVABLITY)

1. Is there a definitive statement of the requirements for communication with other n

II
sy~~r•stems? e) C.IM,3 YN

2. Are there eiiie specifnico requirements for networ process in coatroy? CG.2(0) Y N

3. Are there ap-cific requirementsffnr user session control? CLAW(6 Y N
4. Are the-- specific requirements for a communication routing strategy? CL hA Y N
- Is there a definitive statement of the requirements for standard daita representa-

tions for communication with other systems? CL.2(l) N
6. Are processes and functi~ns separated as logical "wholes' to minimize interface complex-

ity? AU. Y YN
7. Are there specific requirements for each CPU/system to have a separate power source?

AU.2(l) Y N
S. Are there specific requidements for each software scheduling umit to test its own opera-

tion, comm.nication Unks. memories, and peripherals? AU.2(3) Y N
9. Are there specific requirements for the software system to include a word processing

capability? AU.2() YI

10. Are there specific requirements for network communication capabilities in the event
of failure of a iiode or oommunicatioro link? RL.I(M)

_______esadfnt'•ssprtd sIscl"woe"t inmz nefaecmlx

_METRIC WORKSHEAT I . .,YSTEýM. DATE:

RE MUIE,.ENTS ANALYS13ISYS.TEM LVEL NAM INSPECTORt

1 I. Are there specific requirements for a node to rejoin the network when it has been recov-

ered? RE.I(4) Y N

12. Is there a definitive statement of the operating procedures to be used with this system?

CL. 1(15) Y N
13. Is there a low dependency on handshaking time between systems? CL.I(l 1) Y N
14. How many s'stems must respond correctly to successfully complete handshaking? CL.1(10)

IS. Are there no timing depeotdencies on the system communication response time that effect
system performance requirements? CL.l(12) Y .I

16. Are there no timing dependencies on the freshness of data that effect system perormance
requirements? CL. 1(14) Y N

IA DATA BASE (SURVIVABILITY, USABILITY, INTEGRITrY, EXPANDABILITY, COR rECTNES

RELIABILITY, MAINTAINABILITY)

1. Is there a definitive statement of the requirements for maintainiL-g data base integrity

under anomalous conditions? RE.1(2) Y N
2. Are there specific requirements for file/library accessibility from each node? DI.1(4) Y N
3. Are there specific requirements for a virtual storage structure? VR.1(1) Y N

4. Is the4 ý a definitive statement of the requirements for establishing and verifying data

base consistency and concurrency at each node which hosts a data base partition? CS.2(4) Y N

l.9 HUMAN ITERFACE (USABILITY, INTEROPERABILITY)

1. Are all steps in the operation described (operations concept)? OP.l(0) Y N

2. Are all error conditions to be reported to operator/user identified and the

responses described? OP.L(2) Y N
3. Is there a statement of the requirement for the capability to interrupt operation,

obtain operational status, save, modify, and continue processing? OP.1(3) Y N
4. Is there a statement of the requirement for the capability to obtain n.twork resource

status? OP.() Y1N
5. Is there a defin,tive statement of requirements for optional input media? CM.I(6) Y N

6. Is there a definicive statement of requirements for optional output media? CM.2(7) .Y. N
7. 1s there a definitive statement of requirements for selective output control? CM.2([) Y N
8. Is there a definitive statement of requirements for selection of different nodes for

different types of processing or for different types of information retrieval? OP.1(10) Y N

A -6

I IW

METPRC WORKSHEET I ISYSTEM: .A
REQUIREMENTS ANALYSIS/SYSTEM LEVEL INAME: I.NSPECTOF

9. Is there a definitive statement of requirements for establishing standard user interfaces
for network information and data access? CM.2(S)

" 1. Do both projects use the same technical vocabulary with identical meanings? CL.3(I)

1.11 LDOCUMENTATION (REUSAILTY, IJNTEROPFRABUM-JYi

1. Is there no access control to the software document? DA.l(l) Y N
2. Are the documents clearly and simply written? DA.2() Y N

3. Do the documents contain software flow charts with adequate information and explana-
tion? DA.2(2) Y N

4. Do the documents have hierarchical structured table of contents? DA.2(3) Y N
5. Do the documents have index system? DA.2(4) Y N
6. Do the documents have separate volumes based on function? DA.2(5) Y N
7. Do the documents have functional range of the system? DA.2(6) Y"

8. Do the documents describe the functions performed? DA.2(7) Y N
9. Do the documents describe the algorithm used and limitations? DA.2() Y N

10. Do the documents describe the relationship between functions? DA.2(9) Y N
11. Do the documents contain the software program listing? D0.2(0) Y N
12. Do the programs have selective computation/output options? DA.3(l) Y N
13. Are the functions performed generally associated with request application? DA.3(3) Y N
14. Is the other system documentation available in a form that is up-to-date, complete and

clearly organized? SY.(l) Y N

1.1. SECURITY (INTEGRITY)

I. Is there a definitive statement of the requirements for user input/output access con-

trols? SA.1() Y N
2. Is there a definitivw statement of the requirements for data base access controls?

SA.1(2) Y N
3. Is there a definitive statement of the requirements for memory protection across task?

SA.(3) YIN

A-7

MTi ORKSSHEE1j• NSSE= . ATE:

•F~ttRF•I ANTS ALYSIS/SYaTF-M LEyj-- INAME.... IUISPECTOR: ,..

4. is t.here a definitive statement of the requirements for recording and reporting access
to system? 5A.2(1l Y N

5. Is there a definitive statement of the requirements for immediate indication of access
violation? SA.2(2) Y N

6. Is there a definitive statement of the requirements for network access controLs?

SA.1(,) Y N

1.13 FUNCTIONAL OVERLAP (INTEROPERABILITY)

1. How many functions are duplicated in the systems that are to interoperate? FO.I(D)
.1. How many of these duplicated functions will be deleted in one or the other system?

FO. 1(2)
3. How many of these duplicated function pairs will require to be synchronized? FO.1(3)
4. How many of these duplicated function pairs will require redundancy management logic

to combine them? FO.1(4)

1.14 INSPECTOR'S COMMENTS

Make any general or specific comments that relate to the quality observed while applying tr
checklist.

A -9

METRIC WORKSHEE.T 2 SYSTEMi I DATE.:

i TEM LEVEL NAME INSPECTOR:

2.1 STRUCTURE (RELIABILITY, MAINTAINABILITY, VERIFIABILITY, FLEXIBLITY, REUSABILIT
EXPANDABILITY, SURVIVABILITY, PORTABILITY, INTEROPERABILITY, W,'TEGRITY, USABILITY,I CORRECTNESS)

1. Is an organization of the system provided which identifie% all functions and functional
interfaces in the system? DLI(I) Y N

2. Is a hierarchy of system identifying all modules in the system provided? SLI() Y N
3. Are there no duplicate finctions or modules? 51.(2) YN
4. Is an organ ation of the data base provided which identifies all functional groupings

of data and data flow within the system? D0.1(2) Y N
5. Are there provisions for selecting alternate processing capabilities? DL L(3) Y N
6. Are critical system functions distributed over redundant elements or nodes? DI.1(6) Y N
7. Does the distribution of control functions ensure network operation/integrity under ano-

malous conditions? D1.l(7) Y N
9. Are logical structure and function separated in the design? DLI(8) Y N
9. Are phyiical structure and function separated in the design? 01.1(9) Y N

10. Number of nodes that can be removed and still have each node able to communicate with
each remaining node. DI.L(10)

1I. Do processes and functions have loose coupling? MO.3(l) Y n
12. What is the cohesion value of processes and functions? MO.3(2)
13. Can each user utilize the system-as though it were dedicated to that-user? VR.l(t) Y N
l4. Is the user presented with a complete logical system withWut regard to physical topology?

VR.l(0) Y N

L1. Do module descriptions include identification of module interfaces? SI.1(9) Y N
16. Has a programming standard been developed? 5LI() VYN
17. Number of modules with mixed input/output and computational functions? SC.3()
18. is the common function not distributed in different modules? SC.3(4) Y N
19. Does the module not perform many (related but different) functions? SC.3(0) Y N
20. Number of modules which do not perform single function. MO.2(8)
21. Are the modules hierarchically constructed? MO.2(l) Y N

2.2 TOLERANCE (RELIABILITY, SURVIVABILITY)

1. Have accuracy requirements been budgeted to funct'ons? AY.l(6) , ",i

A-9

METRIC WORKSHEET 2 , SYSTEM: DATE:
DESIGN/SYSTEM LEVEL I NAME: I ISPECTOR:

2. Have math library routines to be used been checked for sufficiency with regards to
accuracy requirements? AY. 1(3) Y N

3. Is concurrent processing centrally controlled? AM.I(I) Y N
4. Is parallel processing centrally controlled? AM. IN) N
5. How many error conditions are reported by the system? AM.1(2)

6. How many of those errors are automatically fixed or bypassed anrd processing continues?
AM. 1(2)

7. How many, require operator intervention? AM.1(2)

S. Are there provisions for recovery from hardware faults? AM.4(2) Y N
9. Are there provisions for recovery from device errors? AM.5(2) Y N
10. Are there provisions for recovecy from communication errors? AM.6(2) Y N
II. Are there provisions for system recovery from node or communication failures? AM.7(2) Y N

2.3 OPTIMIZATION (EFFICIENCY)

1. Have storage requirements and limitations been allocated to functions? EF.A(I) Y N
2. Are virtual storage facilities used'? EF.4(2) YN
3. Is dynamic memory management used? EF.4(5) YN

4. Is a performance optimizing compiler used? EF.A(7) YN N5. Have Data Base or files been organized for efficient processing? EF.3(l,5) YIN

6. Are data base files/libraries stored at only one node? EF.4(8) Y N
7. Is data packing used? EF.2(5) YIN
8. Number of overlays EF.2(4)
9. Overlay efficiency - memory allocation EF.2(4)

max overlay size
min overlay size

10. Has program been segmented for efficient storage? EF.4(4) Y.N
11. Have performance requirements and limitations been allocated to functions? EF.l(l) Y N

2.4 COMPLETENESS (CORRECTNESS)

I. Is there a matrix relating !ystem level requirements to functions which implement those

requirements? TR.l(l) .IY

A-10

METRIC WORKSHEET 2 1SYSTEM. IDAT§L

DESIGN/SYSTEM LEVEL I NAtdEg f iNSPECTOR:

2. How many major functions (CPCI's) are identified? CP. I

3. Are requirements itemized in such a way that the functions to be performed, th!-ir

inputs and output% are clearly delineated? CP.I(l) YIN

4. How many functions identified a. e not defined? CP.I(4)

5. How many defined functions are not used? CP. (3)

6. How many interfaces between functions are not defined? CP. 1(6)

7. Number of total problem reports recorded? CP.1(7) 1M

S. Number of those reports that have not been closed (resolved)? CP.1(7)

9. Profile of problem reports, (number of following types)

a. Computationp! h. Routine/System p. Recurrent errors

b. Logic Interface q. Documentation

c. lnput/f.utput i. Tape Processing r. Requirement compliance

d. Data handling j. User interface s. Operator

e. OS/System Support k. Data base interface t. Questions

f Configuration 1. User requested u. Hardware

g. Routine/Routine changes v. Network protocol

Interface m. Preset data w. Communication routing

n. Global variable

definition

2.5 REFERENCES (REUSABILITY)

1. Number of modules with database system reference. Al.l(l))

2. Number of modules with computer architecture reference. AI.3(l)

3. Number of moaules are not in standard computer architecture. AI.(2)

4. Number of modules used microcode instruction statements. AI.4(l)

3. Number of modules used the table driven algorithm. AI.5(2)

2.6 CHANGEABILITY (FLEXSIBLITY, REUSABILITY, EXPANDABILITY, INTEROPERABILrTY) -

I. Percent of meinorv capacity uncommitted. AG.l(2)

2. Percent of auxiliary storage capacity uncommitted. AG.1(0)

3. Percent of speed capacity uncommitted. AG.2(3)

A-Il

FT• ORKSHEET 2 .. SYSTEM: .. . DATE: .

QESIGN/SYSTEM LE•VEL= NAME: ... INSPECTOR. ,

4. Spare 1/0 channel capacity. AG.3(l)

5. Spare communication channel capacity. AG.3(2)
6. Are processors, communication links, memory devices, and peripherals compatible

(of a common vendor or model)? AG.(L Y N
7. Does documentation reveal performance/price of software/system for enhancement trades?

AG.4(2) Y N

8. Do specifications identify new technology tradeoff areas for software? AG.4(3) Y N

9. Do software specifications include requirements for the criteria of the quality factor

expandability. AG.4(4) Y N

10. Based on hierarchy or a call/called matrix, how many modules are called by more than

one module? GE.A(l)

11. Number of modules. GE.l(A)

2.7 SYSTEM INTERFACES (INTEROPERABBJTY, SURVIVABILITY)

1. How many nodes will this network/system interface with? CL. l(l)
2. Have protocol standards been established for network process control? CL.l(2) Y N

3. Have protocol standards been established for user session control? CL.1(8) Y N)

4. Have protocol standards been established for communiction routing? CL.l(9) Y N

5. Are they being complied with? CL.1(2) YIN

6. Number of modules used for input to other systems? CL.1(3)

7. Number of modules used for output to other systems? CL.1(4)

S. Has a standard 4.ita representation been established or translation standards

Letween repr'--sentations been established? Are they being compiled with? CL.2(2) Y N

9. Number of modules used to perform translations? CL.2(3)

10. Is configuration of communicatior, links such that failure of one nods/link will not

disable communication among other nodes? RE.(l) Y N

II. Can node rejoin the network when it has been recovered? RE.l(4) Y N

12. Is data replicated at two or more distinct nodes? RE.l(1) Y N

13. Are processes and functions separated as logical "wholes" to minimize interface complex-

ity? AU.l(l)

14. Estimated number of lines of interface code. AU.1(2)

15. Estimated number of interface modules. AU.i(3)

A- 12

METRIC WORKSHEET 2 ,SYSTEM: DATE:

DEAIGN/SYSTEM LEVEL I NAME- INSPECTOR:

i6. Estimated time engaged in communication. AU.(1W)
17. Does each CPU/system have a separate power source? AU.2(l) Y N
18. Does each scheduling unit test its own operation, communication links, memories, .ind

peripherals? AU.2(2) Y N
19. Does the software system include a word-orocessing capability? AU.2(3) Y N

20. How many other systems will this system interface with? CL.l(13)

2.8 DATA BASE (RELIABIITY, MAINTAINABILITY, VERIFIABILITY, FLEXIBILITY, REUSABILIT"
EXPANDABILITY, USABILITY, INTEGRITY, SURVIVABILITY, CORRECTNESS) i

I. Number of unique data items in data base SI.1(6)
2. Number of preset data items S1.1(6)

3. Number of major segments (files) in data base SI.1'7)
4. 1s the data base structured so that at least one copy of a file/library resides at a node

which is accessible to &11 other nodes? DI.i(4) Y N
5. Is the data base structured so that users need not care about changes in the actual

storage structure of data? VR.l(2) y NI
6. Are there provisions for maintaining data base integrity under anomalous conditions? RE.I(3) Y N
7. Can users manipulate data as if it were not replicated elsewhere in the system? VR.l(3) Y N
8. Have procedures been established for verifying data base consistency and concurrency

at each node which hosts a data bae partition? C5.2(0) Y N
9. Are ill data centrally controlled and symbolically defined and referenced? A1.Z(3) Y N

2.9 HUMAN INTERFACE (USABILITY, INTEROPER.ABILITY)

I. Are all steps in operation described including alternative flows? OP.l(l) Y N
2. Number of operator actions? OP. (1)

3. Estimated or Actual time tr, rnerform? OP.1(4)

4. Budgeted time for complete job? OP.1(4)
3. Are job set up and tear down procedures described? OP. 10) Y N
6. Is a hard copy of operator interactions to be maintained? OP.l(6) Y N
7. Number of operator messages and responses? OP. 1(7)

S. Number of different formats? OP.l(7)
9. Are all error conditions and responses appropriately described? OP.1(2) Y N -

10. Are all access violation* and responses appropriately described? OP.!(8) V N

A-13

I ,
ETR1C WOR1KSHEET 2 ISYSTEM: I DATE: ,

MIGN/SYSTEM LIVEL NAME- TNSPCTOR: ,,

L 1. Does the capability exist for the operator to interrupt, obtain status, save,
modify, and continue processing? OP.I(3) Y N

12. Does the capability exist for the operator to obtain network resource status. OP.1(9) Y N

13. Can different nodes be selected for different types of processing or for different

types of information retrieval? OP, (10) Y N

14, Are lesson plans/training materials for operators, end users, and maintainers

provided? TN.l(l) Y N

l1. Are realistic, simulated exercises provided? TN.L(2) YN

16. Are help and diagnostic information available? TN.l(3) YN

17. Number of different input record formats C,\.l(2,.

18. Number of input values CM.I(3)

19. Number of default values CMi.l(l)

ZO. Total number of parameters CM.A(l)

21. Number of self-identifying input values CM.1(3)

22. Can input be verified by user prior to execution? CM.1(4) YN

23. Is input terminated by explicitly defined by logical end of input? CM.l(5) Y N

24. Can input be specified from different media? CM.1(6) Y N

25. Are there selective output controls? CM.2(l) Y N

26. Do outputs have unique descriptive user oriented labels? CM.2(2) Y N

27. Do outputs have user oriented units? CM.2(3) Y N

28. Number of different output forrats? CM.2(4)

29. Are logical groups of output separated for user examination? CM.2(5) Y N

30. Are relationships bet-meen error messages and outputs unambiguous? CM.2(6) Y N

31. Are there provisions for directing output to different media? CM.2(7) Y N

32. Are there standards governing the user interface for network information and data

access? CM.2(8) Y N
33. Are the standards being r-mplied with? CM,2($) Y N

34. Are there selectable leveir ,! aid and guidance for users of different degrees of expertise?

TN. 1(4) Y N

2.10 TESTING (USABILITY, MAINTAINABILITY, VERIFIABUITY)--APFLY TO TEST PLAN, PROCEDURE,

RESULTS

1. Number of paths? VS.l(l)

2. Number of paths to be tested? VS.l(1)

A-14

T V NA •N R:

3. Number of input parameters? VS. 1(2)

4. Number of input parameters to be tested? VS.l(2)I. Number of interfaces? VS.2(I)

6. Number of interfaces to be tested? VS.2(Q)

7. Number of itemized performance requirements? VS.1(2)

9. Number of performance requirements to be verified? VS.2(2)

9. Number of modules? VS.3(l)

10. Number of modules to be exercised. VS.3(0)

It. Are test inputs and outputs provided in summary form? VS.3(2) TN

2.11 SYSTEM COMPATIBLJTY (JNTEROPERABILrTY)

I. Same I/O transmission ratei in both systems.? SY.I) Y N

2. Same communication protccol in both systems? SY.I(2) Y N

3. Same message content in !)oth systems? SY.1(3) Y N
4. Same message structure ind sequence in ooth systems? SY.I(N) Y N

3. Is data in both eystems ir, the same format (ASCII, EBCDIC,...)? SY.2(I) Y N

6. Same data base structure in both systerms? SY.2(2) Y N

7. Same data base access :echniques in both systems? SY.2(3) Y N

8. Same source language .n both systems? SY.M(O) Y N

9. Same operating system in both systems? SY.4(2) Y N
10. Same support software in both systems? SY.4(3) Y N

11. Same word length in both systems? SY.3(l) Y N

12. Same interrupt structure in both systems? SY.3(2) Y N
13. Same instruction set in both systems? SY.3(3) Y N

2.12 SECURITY (INTEGRITY)

I. Are user Input/Ctutput access controls provided? SA.(1) Y N

2. Are Data Base access controls provided? SA.l(U2) Y N

3. Is memory prowction across tasks provided? SA. 1(3) "N
4. Are there provisions for recording and reporting access to system? S•.2(l) Y N

3. Are r~etwork access controls provided? SA. (4) Y N
6. Are there provisions for immediate indication of access violation? SA.2(2) YN

A-1S

i ~MLUIC•; WQRKSHI'IT) S ,YSTP-Mi DATE&

r• N/YSEMLEVL ,,NAME: IN SPECTOR:

2.13 9SMCTORS COMMENTS

Make any gweral or specific comments about the quality observed while appying thisl checklist.

A-16

METRIC WORKSHEET 3 IITM NAME= DAI•
DESIGN/MOOULE LEVEL IMODULE NAME: IINSPECTOR:

3.1 STRUCTURE (REILABILITY, MAINTAINABELITY, VII nFABULfY, FLEXIDILITY, REUSAM1

EXPANDABDILTY, CORRECTNESS PORTABRLITY, INTEROIRABILfTY, SURVIVABILITY)

I. Is an organization of the system provided which identifies all modules and module inter-

faces? DI.I() Y N
2. Is an organization of the data base provided which identifies all data base modules and

module interfaces? 01.1(2) Y N
3. How many decision points are there? 51.301)

4. How many subdecision points are there? 51.301)
S. How many conditional branches are there? SI.3(I)
6. How many unconditional branches are *ere? SI.3(0)

7. Is the module dependent on the source (,f the input or the destination of the output? SL.I(3) Y N
S. Is the module dependent on knowledge c" prior processing 51. (1) Y N

9. Number of entrances into modules SL. l0
10. Number of exits from mnodule S1.1(U)
11. Does the module description include input, output, processing, and limitations? 51.I(4) Y N
12. 13 code written according to a programming standard? SI.4(13) YN

13. Are macros and subroutines used to avoid repeated and redundant code? 51.4(14) Y N
14. Number of input parameters. SP.(II)
13. Number of output values used. SP.1(2)
16. Number of output parameters. SP.1(2)
17. Can the same function not be accomplished by multiple variant forms? SP.I(3) Y N
18. Does each function and module have loose coupling? MO.3(1) YIN
19. What is the cohesion value of each function and module? MO.3(2)
20. Do module descriptions include identification of module interfaces? SL.1(9)I'M N
21. Is module designed in top down fashion? Si.I(I)
22. Number of functions performed. FS.l(l)

3.2 TOLERANCE (RELAMLY, SURVIVABiLITY)

I. When an error condition is detected, is it passed to calling module? AM. (3) Y N
2. Have numerical techniques being used in algorithm been analyzed with regards to accuracy

requirements? AY.I(4) Y N
3. Are -alues of inputs range tested? AM.2(2) Y N
4. Are conflicting requests and WLegal combinations identified and checked? AM.2(J) Y N

A-17

SM
FTR ir_ w ,O R K SH EET 3 SYSTE N A En.A•TE-

IESIGN/MgO)ULE LEVEL MODULE NAME .- NSPE•CTOR.

5. is there a check to see if all necessary data is available before processing begins? AM.2(5) Y N

6. Is all input checked, reporting aU errors, before processing begins? AM.2(4) Y N

7. Are loop and multiple transfer index parameters range tested before use? AM.3(2) Y N

8. Are subscripts range tested before use? AM.3(3) Y N

9. Are output3 checked for reasonableness before processing continues? AM.3(4) Y N

10. Are checksums computed and transmitted with all messages? AM.6(3) Y N

11. Are checksums computed and compared upon message reception? AM.6(4) Y

12. Are the number of transmission retries limited? AM.6(5) Y N

13. Are adjacent nodes checked periodically for operational status? AM.7(3) YN

14. Are there alternate strategies for message routing? AM.7(4) Y N

15. Have accuracy requirements been budgeted to modules? AY.1(6) Y N

3.3 OPTIMIZATION (EFFICIENCY)

I. Are specific performance requirements (storage and routine) allocated to this module?

EF.1(I) (IN

2. Which category does processing fall in: EF.2

Real-time

On-lint

Time-cinstrained

Non-time critical

3. Hcw many loops have non-loop dependent statements? EF.2(1) .
4. Is bit/byte packing/unpacking performed in loops? EF.2(5) Y N
5. Is data indexed or reference efficiently? EF.3(5) Y N

6. Is performance optimizing compiler/assembly language used? EF.2(2) YN

3.4 COMPLETENESS (CORRECTNESS)

1. Is there a matrix relating functional requirements to the module which implements

those requirements? TR.I(l)

2. Can you clearly distinguish inputs, outputs, and the function being peformed? CP.l(I) Y N

3. How many data references are not defined, computed, or obtained from an external

source? C!. 1(2)

4. Are all conditions and processing defined for each decision point? CP.1(5)

5. How many problem reports have been recorded for this module? CP.l(7)

A-18

II

S, METRI(• WORKSHEET 3 SYSTEM NAME, DATE-

SD_I3QqN/MSQDULE LEVEL . . .MODULE NAME, IJNSPECTOR-.

6. Number of problem reports still outstanding CP.I(7)
7. Profile of Problem Reports: (Number of Following Types)

a. Computational h. Routine/System Inter- p. Recurrent Errors
b. Logic face q. Documentation
c. Input/Output L Tape Processing r. Requirement Compliance
d. Data Handling j. User Interface s. Operator
e. System/OS Support k. Data Bane Interface t. Questions
f. Cjnflguration 1. User Requested Changes u. Kardware
g. Routine/Routine Inter- m. Preset Data v. Network Protccol

face n. Global Variable Definition w. Communicacion Routing

3J RMEER0NCES (MAW AINAUNlTY, FLEXIUITy, vERIFAiIT, PORTAMLITY, RlEUSABI•L
INTEROPERABILrTY, EXPANDABnJLrY, SURVIVABILITY)

1. Number of references to system library routines, utilities or other system provided facilities

ID.l(l)
2. Is a common, standard subset of programming language to be used? 10.1(2) Y N
3. Is the programming language available in other machines? 1D.2(Q) Y N
4. Number of input/output actions. ID.2(2)
3. Number of calling sequence parameters MO.2(3)
6. How many calling sequence parameters are coitrol variables? MO.2(3)
7. Is input passed as calling sequence parameters MO.2(4) Y.N

I. Is output passed bhck to calling module? MO.2(0) Y.N
9. Is control returned to calling module? MO.' 46) Y N

10. Is temporary storage not shared with other modules? MO.2(7) Y N
i1. Does the module associate with database system? AI.l(l) Y N
12. Number of the domairs in system AI.3(1)
13. Number of the domains algorithm works for in system AI.(1)
14. It, the alborithrm certification available? AI.3(3) Y.N
13. Is the allorlthm test data available? AIJ(L) Y N

A-19

mETRic WORKSHEET I SY=TM NAMEP IDATE.

DESIGN/MODULE LEVEL I MODULE NAME: INSPECTORu

16 (mmLcABIITY (FLEXMiLITY, REUSABILITY, EXPANDAB•iLTY, IN'.ROPERABiLTY)

1. Is logical processing independent of storage specification? AG. 1 (l) Y N

2. Percent of memory allocation uncommitted. AG.l(2)

3. Are accuracy, convergence, or timing attributes and limitations parametric? AG.2(l) Y N

4. Is module table driven? AG.2(2) Y N

5. Percent of cycle time allocation uncommitted. AG.2(3)

6. 1/O channel time allocation uncommitted. AG.3(0)

7. Communication channel time allocation uncommitted. AG.3(2)

S. Does the module not mix input, output and processing functions in same module?
GE.2(l) N

9. Number of machine dependent functions performed? GL.2(2)

10. Is processing not data volume limited? GE.2(3) YN

11. Is processing not data value limited? GE.2(Q) Y N

3.7 SYSTEM INTERFACES (SURVIVABULTY) [
i. Estimated lines of interface code. AU. 1(2)

2. Estimated lines of source code. AU.l(2)

3. Estimated number of interface mooules. AU.I(3)

4. Estimated time engaged in communication. AU.l(4)

3.3 CONSISTENCY (CORRECTNESS, RELIABILITY, MAINTAINABILITY)

1. Does the design representation comply with established standards CS.l(l) Y N

2. Do input/output references comply with established standards CS.1(3) Y N

3. Do calling sequences comply with established standards CS.I(2) Y N
4. Is error handling done according to established standards CS.I(4) Y N

3. Are variables named according to established standards CS.2(2) Y N
6. Are global variables used as defined globally CS.2(3) YN

7. Does the data usage representation comply with established standards? CS.2(l) Y N

A-20

MLTlIC WOfSHFFT YSTEM NAME: DATE&

•- DULE LEVEL .ODULINL ME: INSPECTORt

3.9 FUNCTIONAL CATZGORIZATrON

Categorize function performed by this module according to following:

CONTROL - in executive module whose prime tunction is to invoke other modules.

INPUT/OUTPUT - a module whose prime function is to communicate data between the

computer and either the user or another computer.

PRE/POSTPROCESSOR - a module whose prime function is to prepare data for or after
the invocation of a computation or data management module.

ALGORITHM - a module whose prime function is computation.

DATA MANAGEMENT - a module whose prime function it to control the flow of data

within the computer.

SYSTEM - a module whose function is the scheduling of system resources for other modules.

COMMUNICATION - a module whose pVime function is to manage messasgo routing between nodes.

NETWORK MANAGEMENT - a mod'•he whose prime function is to monitor and

contet) network-level resources.

3.10 I rECTORS COMMENTS

Make any specific or general comment, about the quality observed while applying this checklist.

A-21

1IT• (%.W(R HIFFrT •L %YSTFM NAME." , DAT~i
-VSOURrECOMEMODULE LEVEL MODULE N. JE.- INSPECTORt

4.1 STRtUCTURE (RpELIABILIY, MAINTAMAULIJTY, VERMMI• YI , FLEXZ.1uTrY, P)R.TA~nJT"

REUSABUT, EXPANDABILITY, CORRECTNESS)

1. Number of lines excluding comments 51.0(2)

2. Number of declarative statements SI.A(9)

3. Number of data manipulation 5tatements S1.4(9)
4. Number of statement labels (Do not count format statements 51.4(6)
3. Number of entrances into module SI.1(5)

6. Number of exits from module SI.l()
7. Maximum nesting level S.4(7)
S. Number of decision points (IF, WHILE, REPEAT, DO, CASE) Si.3(l)

9. Number of 3ub-decision points. S1.3(1)
10. Number of conditional branches (computed go to) SI.($)

11. Number of unconditional branches (GOTO, ESCAPE) SL4(S)
12. Number of loops (WHILE, DO) SI.4(3,4)

13. Number of loops with jumps out of loop SI.A(3)
14. Number of loop indices tha, are modified S1.4(h)
15. Number of constructs that perform module modifications (SWITCH, ALTER) SL4(5) (Also

see 4.., MO.2(2))
16. Number of negative or complicated compound boolean expressions Si.4(2)
17. Is a structured language used SI.2(I) Y N
18. Is flow top to bottom (are there no backward branching GOTOs) 51.4(1) YN
19. Is code written according to a programming standard? SI.4(13) YIN
20. Are macros and subroutines used to avoid rept-ated and redundant code? SI.4(14) Y N
21. Number of data items used to specify the interface. SC.I(l)
22. Number of data items passed implicitly across interface via comrhon global da^a without

adequate comments. SC.1(2)
23. Number of nesting levels in interface. SC.1(3)
24. Number of interface data items with ntsative qualification. SC.1(4)
25. Number of data items passed across module interface. SC.1(3)
26. Does the module have comments about the common control blocks, common riata blocks

and global variable names in moduie interface? SC.I(6) Y N
27. Does the module modify other modules? SC.1(7) Y N
28. Number of possibl unique execution paths. SC.2(1)

A-22

MAETRIC W•KSHERT it SYSTEM NAME , DATE:

I UB •.CODE/MODULE LEVEL M MODULE NAME: INSPECTOR:

29. Number of IF stalcrents. SC.2(2)
30. ' .ýnber of function CALLs. SC.2(3)
31. Number of control variables used to direct execution path selection. SC.2(4)

32. Number of DO gremps. SC.2(5)
33. Does the module have code comments about calling what modules and called by what

modules? SC.2(6) Y N.j

34. Does the module share temporary storage with other modules? SC.3(2) Y N
33. Doei the module have mixed database-management and storage-management routines?

SC.3(3) YN
36. Average number of formal parameters in each routine. SC.4(l)
37. Average number of common global variables used in each module. SC.4(2)

38. Number of global variables modified by one routine and referenced by another routines.
SC.4(3)

39. Does the module connect to other modules with functional name? SC.A(N) YN
40. Does the modu[communicate with other modules by passing control elements? SC.4() Y N
41. Number of machine level language statements. A1.3(3)
42. Does the module with lgical processing depend on data storage specification and re-

quirement? A1.2(4) Y N
43. Does the program compute the same value more than once? SC.5(l) Y N
44. Does the program insert a statement which never needs to be executed? SC.5(2) Y N

45. Does the program maintain a constant meaning for each variable? SC.5(3) Y N
46. Dots the program use the unnecesary intermediate variables? SC.5(4 Y N

4.2 TLME E (PEZLAI•IrTY, SURVIVABILITY)

1. Are loop and multiple transfer index parameters range tested before use?
AM.3(2) Y N

2. Are subscript values range tested before use? AM.3(3) Y N
3. When an error condition occurs, is it passed to the calling module? AM.l(3) Y N
4. Are the results of a computation chocked before outputting or before processing continues?

AM.3(4) YN

A-23

:,J,-

"M L.L ' 1MF~t"• KSHF_"T. UY q "M NAME, DA•TE-
sojuRcE (CO.E/MODU•L.E LEVEL |MODULE NdAME: IJNSPECTO•R-- ,

10 OPTIMIZATION (EFFICIENCY)

I. Number of mlix mode expressions? EF.3(3)
2. How many variables are initialized when declared? EF.3(2)
3. How many loops hame non-ioop dependent statements in them? EF.2(l)
4. Do loops have bit/byte packing/unpacking? EF.2(0), EF.4(6)
5. How mý.ny compound expressions defined more than once? EF.2(3)

CA CONCSENESS (MAINTAINABILITY) - SEE METRIC EXPLANATIONS

I. Number of operators CO.l(l)

2. Number of unique operators CO.l(l)
3. Number of Operands CO. (l)
4. Number of unique operands CO.I(I)

4.E•.FERENCES (MAINTAINABILITY, VERIFABILITY, FLEIT, PORTABIUTY, RZUSABMW

INT EROPERABILITY, EXPANDABILITY, SURVIVABILITY)

I. Numbe., Of Calls to other modules MO.2(l)

2. Number of references to system library routines, utilities, or other system provided functions

ID.l(0)
3. Number of calling sequence parameters MO.2(3)
4. How many elements in calling sequences are not parameters? MO.2(3)
5. How many of the calling parameters (input) are control variables? MO.2(3)
6. How many parameters passed to or from other modules are not defined in this module?

MO.2(3)
7. Is input data passed as parameter? MO.2(4)
If Is output data passed back to calling module? MO.2(0)
9. Is control returned to calling module? MO.2(6)

10. Number of lines of code? MO.2(2)

4.6 CHANGEABILITY (FLEXIBILITY, INTEROPERABILITY, REUSABIJTY, EXPANDABUMITY)

I. Is module table driven? AG.2(2) YN
2. Are there any limits to data values that can be pructssed? GE.2(4) Y N

A-24

urr • Wo1'.tW..T CL SYSThM NAME, IDATE: ,
• '• I •=t-nPI Vh I LWVF9 MOIQUL& NAMEr INSPECTOR,

3. Are -there any limits to amounts of data that can be processed? GE.2(i Y N

4. Are accuracy, convergence and timing attributes parametric? AG.2(l) Y N

5. Anmunt of memory used. AG.L(2)

6. Does the module allow for modifying resource utilization? DA.3(2) Y N

7. Ooes the module have comments about functional descriptions? FS.!(2) Y N

3. Does the module have comments "bo.t algorithm descriptions? AI..50) Y N

9. Does the module have the selected computation or output features? DA.3(I) Y N

4.7 RNOUTOUTIPUT (REI&SJ/• TY, POR31TABITYI, RRIJS"BLITY, SJliVTV ABý.r

INTEROPERAB!LrrM)

I. Number of input stSaMnt ID.2(7)

2. Number of output statements ID.2(2)

3. Are inputs range-tested (for inputs via calllng sequences, global data, and input statements)

AM.2(2) YN

4. Are possible conflicts or dllegal combinations in inputs checked? AM.2(3) Y N
5. Is there a check to determine if all data is available prior to processing? AM.2(0) Y N

6. Is all input checked, reporting a3 errors, before processing begins? AM.2(4) Y

7. Number of lines of interface code. AU.l(2)

9. Number of moduies with interface code. AU.1(3)

9. Are the input/'output formats well defined? FS.2(3) ýYN

4. SELF-DSCRW !NM (MAINTAINAB•MLTY, FLEX3IJTY. VERIPVIAS4IY, PORTABW'fT

REUSAbUXMY)

I. Number of lines of source code SD.1(1)

2. Number of non-blank lines of comments SD.I().

3. Are there prologue comments provided containing information about the function, author,
version number, date, inputs, outputs, assumptions and limitations? SD.2(l) Y N

4. Is there a comment which indicates what itemized requirement is satisfied by this module?

5D.1;1 YIN
5. How many decision points and transfers of control are not commented? SD.2(3)

6. Is ali machine language code cormmented? SD.2(4) YN

7. Are non-standard HOL statements commented? SD.2(3)

A. How many declared variables are not described by comments? SD.2(6)

A-25

J=E:',W RKSET 4, SYSTEM NAM~r , DATM ,, ,,I UiCZ COrE/MODULE "E MODULE NAMEL INSPECT-RJ

9. Are variable names (mnemonics) descriptive of the physical or functional prop" ty hey
represent? SD.3(2) ,=YN

10. Do the comments do more then repeat the operation? SD.2(7) Y N
11. Is the code logically blocked and indented? 5D.3(3) Y N
12. Number of lines with more than I statement. SD.3(4)
13. Number ot continuation lines. 5O.3(4)
14. Are comments set off fronk code in a uniform manner? 50.2(2) Y N
15. Is this module free of machine level lantuage statements? SD3(1) (Also see 4.1, AI.3(3)) Y N
16. Is the module in the st'ndard format organization? SD.3(5) Y N
17. Does the module use the language keywords? 50.3(6) Y N

4.9 DATA (CORRECTNEI RELIABLITY, MAINTAINABILITY, VERWIABILITY, EMIqCZN.'
FLEXILI'TY, REUSABILITY, EXPANDABILITY)

I. Number of local variables 51.4(10)

2. Number o! g!obal variables S1.4(10) b
3. Number of global variables renamed EF.4C()
4. How many variables are used for more than one purpose? CS.2(3)
3. Number of executable statements. SI.M(1i)
6. Number of variables used? S1.4(l i)
7. Does each variable have single use? S1.4(12) YN
S. Number of occurrences of uncommon unit operations EF.)(4)
9. Does the module have comments about input data value range and their default

conditions? SD.2(S) YN
10. Does the module have the code comments about data items used? AI.2() N
II. How many data items are described parametrically? AI.2(L)
12. How many data items could be described parametrically? AI.2(0)
13. Does each module have comments aout global, local parameter variables? AI.2(2) hY N

4.10 INDEPENDENCE (PORTABILITY, REUSABILITY, INTEROPERABILITY)

1. Is ctode independent of word and character size? '0.2(3) Y N

2. Is a common, standard subset of programming ianguage used? ID.i(2) Y N
3. Is data -epresentation machine independent? ID.2(4) Y N

A-26

SERIC WORtKSHEET 4 ISYSTEM NAMi&:
sýMJM CDEMOULEF LPVE-L 1MOULE NAME-t INSPECTOgJ

4.11 DYNAMIC ME.ASJURUENTS W•1rW, REL.UUNILrY, FLE-XIbIITY, EXIA/NOABU.-

rrY, SURVIVABLFTY)

1. During execution are outputs within accuracy tolerancesT AY.I(5) YIN

2. During moct~e/darvelopm,"t testing, what was run time? AG.2(3)

3. Complete memory map for execution of this module EF.()

Size (words of memory)

APPLICATION

SYSTEM

DATA

OTHER
•. During execution now many data items were referenced but not modified? EF.3(6)

3. During execution how many data items were modified? EF.X(7)

6. Amount of 1/O channel cap&city used. AG.3()

7. Amount of commurication channel capacity used. AG.3(2)

8. Time engaged in communication. AU.1(4)

9. Module linkage time EF.2(6)

10. Module execution time EF.2(6)

It. OS linkage time EF.2(7)

U2. OS execution time UF.207)

4.12 INSPECTORS COMMENTS

Make 4ny general or specific comments that relate to the quality observed while applying this checklist.

A-27

APPENDIX B

METRIC TABLES

Appendix B contains the metric tables which are used for calculating values for
metrics and metric elements. The tables are organized alphabetically by quality
criteria name and numerically by metric acronym. A summary of the metric tables
and a correlation to metric worksheets are shown on the next several pages.

Each metric table identifies the quality criteria, the metric, and the metric element
and references the applicable quality factors. Formulas are stated, where appropriate,
to calculate values for metric elements and for metrics. Each metric element is
cross-referenced to the software development phase during which it is applicable and
to the! appropriate worksheet and worksheet section(s) (see Appendix A, Metric Work-
sheets). The worksheet cross-reference is by a decimal number scheme. If, for
example, 1.2 is called out, this refers to Metric Worksheet 1, Section 2. A cross-
reference enclosed in parentheses indicates a reapplication of the metric element
during a subsequent development phase.

Each metric in the tables is identified by a type code: an (a) following the metric
name identifies an anomaly detecting metric, and a (p) identifies a predictive metric.
If a normalization function has been established for a quality factor but the metric is
not included, it is because the metric did not illustrate sufficient correlation with the
operational history. In lieu of inclusion in the normalization function, some metrics
are maintained as strictly anomaly-detecting metrics; they are felt to identify or assist
in identification of problems which should be and are typically corrected immediately
to enhance the quality of the product.

The contents of this appendix are based on the results of this contract, "Quality
Mvetrics for Distributed Systems", F3060?-SG-C-0330 and the results of contract
F30603-80-C-0265, "Software Interoperability and Reusability". This appendix includes
a refinement and reorganization of metric table information initially defined in
RADC-TR-77 -369 and RADC-TR-80- 109.

METRIC TABLES SUMMARY

CRITERIA ACRONYM METRICS

ACCURACY AY.! ACCURACY CHECKLIST

ANOMALY MANAGEMENT AM.I ERROR - TOLERANCE/CONTROL CHECK-
LIST

AM.2 IMPROPER INPUT DATA CHECKLIST
AM.3 COMPUTATIONAL FAILURES CHECKLIST
AM.4 HARDWARE FAULTS CHECKLIST
AM.5 DEVICE ERRORS CHECKLIST
AM.6 COMMUNICATION ERRORS CHECKLIST
AM.7 NODE/COMMUNICATIONS FAILURES

CHECKLIST

APPLICATION
INDEPr•NDENCE Al.I DATA BASE SYSTEM INDEPENDENCE

AI.2 DATA STRUCTURE
AI.3 ARCHITECTURE STANDARDIZATION
AI,4 MICROCODE INDEPENDENCE
AI.5 ALGORITHM

AUGMENTABILITY AG.!I DATA STORAGE EXPANSION MEASURE
AG.2 COMPUTATION EXT :NSIBILITY MEASURE
AG.3 CHANNEL EXTENSII,ILITY MEASURE
AG.4 DESIGN EXTENSIBTJITY CHECKLIST

AUTONOMY AU.I INTERFkCE COMPLEXITY MEASURE
AU.2 SELF-SUFFICIENCY CHECKLIST

COMMONAL ITY CL.1 COMMUNICATIONS COMMONALITY
CHECKLIST

CL.2 DATA COMMONALITY CHECKLIST
CL.3 COMMON VOCABULARY CHECKLIST

COMMUNICATIVENESS CM.I USER INPUT INTERFACE MEASURE
CM.2 USER OUTPUT INTERFP CE MEASURE

COMPLETENESS CP. I COMPLETENESS CHECKLIST

CONCISENESS CO.I HALSTEAD'S MEASURE
|!

CONSISTENCY CS. I PROCEDURE CONSISTENCY MEASURE
CS.2 DMrA CONSISTENCY MEASURE

DISTRIBUTEDNESS DI. I DESIGN STRUCTURE CHECKLIST

DOCUMENT ACCESSIBILITY DA.I ACCESS NO-CONTROL
DA.2 WELL-STRUCTURED DOCUMENTATION
DA.3 SELECTIVE USABILITY

B-2

METRIC TABLES SUMMARY

CRITERIA ACRONYM METRICS

EFFECTIVENESS EF.1 PERFORMANCE REQUIREMENTSEF.2 ITERATIVE PROCESSING EFFICIENCY
MEASURE

EF.3 DATA USAGE EFFICIENCY MEASURE
EF.A STORAGE EFFICIENCýY MEASURE

FUNCTIONAL OVERLAP FO.1 FUNCTIONAL OVERLAF MEASURE

FUNCTIONAL SCOPE FS.I FUNCTION SPECIFICITY
FS.2 FUNCTION COMMONALITY
FS.3 FUNCTION COMPLETENESS

GENERALITY GE.I MODULE REFERENCE BY OTHER MOD-
ULES

GE.2 IMPLEMENTATION FOR GENERALITY
CHECKLIST

INDEPENDENCE ID.1 SOFTWARE SYSTEM INDEPENDENCE MEA-
SURE

ID.2 MACHINE INDEPENDENCE MEASURE

MODULARITY MO.2 MODULAR IMPLEMENTATION MEASURE
MO.3 MODULAR DESIGN MEASURE

OPERABILITY OF. 1 OPERABILITY CHECKLIST

RECONFIGURABILITY RE. I RESTRUCTURE CHECKLIST

SELF-DESCRIPTIVENESS SD.I QUANTITY OF COMMENTS
SD.2 EFFECTIVENESS OF COMMENTS MEASURE
SD.3 DESCRIPT!VENESS OF LANGUAGE MEAS-

URE

SIMPLICITY S1I. DESIGN STRUCTURE MEASURE
SI.2 STRUCTURED LANGUAGE OR PRE-

PROCESSOR
SI.3 DATA AND CONTROL FLOW COMPLEXITY

MEA•SURE
SI,4 COCDING SIMPLICITY MEASURE

SPECIFICITY SP. I SCOPE OF FUNCTION MEASURE

SYSTEM ACCESSIBILITY SA.I ACCESS CONTROL CHECKLIST
SA.2 ACCESS AUDIT CHECKLIST

B-3

METRIC TABLES SUMMARY

CRITERIA ACRONYM METRICS

SYSTEM CLARITY SC.A INTERFACE COMPLEXITY
SC.2 PROGRAM FLOW COMPLEXITY
SC.3 APPLICATION 6UNCTIONAL COMPLEXITY
SC.4 COMMUNICATION COMPLEXITY
SC.5 STRUCTURE CLARITY

SYSTEM COMPATIBILITY SY.I COMMUNICATION COMPATIBILITY
CHECKLIST

SY.2 DATA COMPATIBILITY CHECKLIST
SY.3 HARDWARE COMPATIBILITY CHECKLIST
SY.4 SOFTWARE COMPATIBILITY CHECKLIST
SY.5 DOCUMENTATION FOR OTHER SYSTEM

TRACEABILITY TR.1 CROSS REFERENCE

TRAINING TN. I TRAINING CHECKLIST

VIRTUALITY VR.1 SYS[EM/DATA INDEPENDENCE CFECK-
LIST

VISIBILITY VS.I MODULE TESTING MEASURE
VS.2 INTEGRATION TESTING MEASURE
VS.3 SYSTEM TESTING MEASURE

=•'

I

B-4

... ..

"WitIC WazRKS91 COS*ILATION

AV11.2 2.2 3.2 1 142

ANOMALY PlANAME

AMA 21 3. 4.2 2.2
AN.2 1. 3.22..

An 1.2 2.2 t.2

WCAmiO 1.2 2.2 3.2

All. 1. 2.5 3.5 2.5
0.71. 2.8 4..4. 2.2

AM. '2.5 4.4 2.5
A1.2 2.5 ... 2.5
A1.3 . .

I X AUGMENT-

ASILITYf2. 3. (34 24

A61 .6 2. 3.3 (3.6),. .
A4.2 1.8 2.8 3.8 (3.8)4.11 2.6

Ar.1 1.11.6 212.6 3.1 ...

KTONOcIINT16

x COMMONALITY
OA.1 1.7 .12.
OA.Z 1.11 .72.
OA.3 1.10 .

K EF7MICATIIE-S
17.1 1.3 2.3 3.3
174 1. 2.3 . .341 2.3

17.3 . 2.3 3.3 (3.3) 4.. 2.3

C4.9. 4.11

17.4 . 2.3 . (4.814.9. 2.3

OA.~p1IA 1.131.1

___________A. 1.11_ ______ ____ ____ ____ __

B-. 1.5 .

MEITRlIC WOKSHUtT COe.RKLATIOtN

QUAIATY FACTO RSU PtIASl1.

SCOPI
FSd).I 4.5

Fi.3 1.5

t, II1 AI T.

S 2 1 ZNOEP'Eh&MCE
10.1].. 4.5.4.1Z0

4.10

K I K K K K •0LAAJTVr

M0.3 1.1 2.1 3.1

OP.1 1.9 2.9 2.9

X RECOWITGUft-

R3.1 1.j.1.8 21.72.8 2.7.2.8

K K I I SELF-
OESCRIPTEIA/!SS

METRIC
FSD. .1 4.8FS.Z 1 4,7

30.2 4.5,4.9SD.3 4.1

I K X X SIMPERICITY
31.1 1.1 2.1.2.8 3.1 4.1 2.1.2.8

St. 2. 4.6

31.3 3.1 4.1

:2 (..4.1

4.10

C IES IIBIL ITY
PC 2 2.1 3.1 5 (..5 4,
5143 1. 2 .11 3.

SY,1 2.11i
31.5 4..11

x OPRACEBILITY

73.1 .4z2413.

OF.41 2.9 2.9

ABIITUAILTY

13.1 . 2,.12 2.5a 2.1.2.8

K I I x SE8LF- Y

YS.1 2.10 2•.10

S.2 2.10 2.10
S1.3 2.10 2.
S1.4 1.1 3.1 4.1.4.9
SYBSTE

TACCESSBILITY
1'A.1 1.12 2,Z 2.14

TN.2 1.1 .12 2.12

SYSTEM CLUARITY

SSC. 1 4.1 .1
VSC 2 4.1 .1
V5,3 2.104. 2.1I

(~~S 4 4 14Pialmo et," ~'JISbe~u bl

B-6 4:

, SYSTEM""•"<,,,+ ••*:•i-•T -

LL c - -4 1 1 1 1

<~ :c

U -L

U >o

C -

'1,u

U -

B-7

z -.- .0 8

0

uj Q
u . __ _ _ _ _ _ _ _ _

.j W I i

N N

z 2

ui -

8
Cd >a- U

LL;U . C 4

L 0

LU - - a

1 . 4 . _ _ _ _ _ _ _ _

m- 16. = a;z U8. r LI
<N OA = t

-0 ~ . - E ~ * ~ _ _ _ _ _ _ _ _ _ _ _

B-

4'

!6z0

T In

CL

v J2

-. :, two

tI J Lu

o E = -9 -4

2.0~

R <~

2 <

0-o~
>

ui

~*~* .LU

7; ZTI______

I.- -

LU

~E Eo *' -

ui j

L4 <; I

0..

.1k

I-6.

CA
Cv

N

z U E.

21

I-U

z w r=

CdC

u ~ ~ ~ IE L

z B-12

jTII

•.1

I "i iII

~-- - -• r

C1

A~ Ni

-c 0

-u <l % - -

B-1

z - vr
ad Z

44 C

B-1

I -Z

z 2

a.;

r- ;

CL -d m . -0

W& Il 8 "

w ~ I B.16

FIC

iL__

'- 0 _ _ _ _ _ _ _ _ __-_

_ _ vIi -. <
z 8 .

LU~~~ j- __ _ _ _ _ ___ _ _ _ _ __ _ _ _ _

<~ *'

u I _ _.ji
-. 4k _ _ -

C6U

LU

- U-17

C)

i-

CL v

U. U U% uA

zL ____ ___ ___W__ __A

I- 0

Lij

z8

U.18
u~uui

B-1

Eu

E 'C

0 u

Eu.E

- Eu

4Jj<

-B-1

1 - vi

W-'

° >

o -- -~

o--

° i

>:

Y.,

LU >

o 0

dii

E >o
utr
LZ. (Y

.2 V

Eu-

1-~ toUEI.

-z uj R Z E '. 2
uj 78 m

4:E

C-2

B-2

a& 4

CN

zo

u -c

;.. __. % b a v"

8- -t

X An

0 j 's

LIJ 0
%uLl

.E E - j-

0-J

B-21

I-

C6

z
vi

W. no'0'

ha(-

Z.

u --2_

IC
jg \D 6

)I 2L__

hau0,%

zz <*

7.- u
u0'

hi. ~ -

- - -B-2-

O ..-- = ...-

ILIz< F
0.

x

>>

S- - -

LU

0aI- .\ Ol ," \O e'.

S E _ >

LU

,< '0.° '0• _%" '.0

Ui u

LL •- ,- - -:j to

1,• - Z E .

U j .& , u -

Z. L M CL

C.. Lu
LU Q-~

B -23

Nw 'A4

I.A A

00

IVA - -

I-L

L6 6 N
-W

Cj

N

I.. _ ____ _____ ____ __ad

- -B-2-

As

lgE

Z, cm ~ -

In _ _ _ _ _ _ _ _

mi Ž__ ____

-J

4: - a -i

CU >

~ LU
Ej u

C-41

LU U'j. .L

~~B-25

ca
< NN

0

0

o C 0

0u

00

CLL

00

MJ4 0 a~ W0

IVE4 0 vE b- 0

0 v v 0 U

< 2 u .e Uy.
E. I = A = 9SE

4. ~U o .

0 a I- c

I-I

8-26

u0 I0

00

- - -

-2 v - -

~~~1 __ _ ___

-J -_ _ _ _ - - -_ _ _

uVIP

z E0

0 - E - I'

0 Vs
Z -A <~*~

2- lz -ý

00o .s .su

~ 0 E B-27



z I-.
44

- - - a
4.

0

4%.
- - N

- - - -

-a

� - - - __________________________

- - -

- - -

I..4,uJ
o a

1%.

I-. �
Z C�-. N ____________________________

- - - - - I- -

� -� I

0* ��'-
14 440 4-.1

t4. � - -

- ---

_ - - - - - �

I..

�
o :

4, a
U

�. -
.'

�3

�- 514
Z�o IA� -
UC(J

.� 2
-4 � ;-� .�

.4:z .4:�;; �o � *� *� U4 0
.� �-

0 .44 �i *�c �
U h..; �

1-44 tA �

I-
.4:- �- .�

I- N- I I-
-J

V U _______________

- - -

B-28



IVI

-U -

0 8

0
u

2-<

tu L - -

B--



r- - -- ---ow

(A C -> N kN N

uJ

U._c

Ia 0% 6% 0

LU j 2 -0 0 V%

0 U%

U..

< ce

r- 20u

LUU

~U u
uj u. IA .U e

4- -
4

B
-

30U



Co

i- z - )

-6J

D >

-. U 0

D 4)4. u

C6 C LYE Z I

-u 00 0

ujC

I- ' U.

B) -31



4ij Z.4.

____iN

641 
4 

4

E-

~~% 7ZIA6

10. C. . 41 
4I 40

z 
*

ou 6. 1- 
A4 _ __

U- -Z 

m- -

.. 9 t

- C 

4.

m E. 4

~ , ~ . , - . - - -W .0 V C L 
-

-

4. 4 .8--1 1 i Ul =
<. < <

4) ~ <
6. *~ 

>

0 
E

4)

4) 
-32



.92.

z

zB-3



I -

)- . ~

a,,<~ oj

j j'
- j E U zi 60 % C

.2 E

Z '
U.1 .9 -(

u . 0 _ _ o 4 .0_ _ _ _ _ _U -J -%-
V)

LU

4LIVA 
.

B-3



z -
UB

_ _ _

~q$A
zL i

J -

>, >

0 'y 'A -6-

I- Z
0 o.

u .0
u ~

u .j-

VIJ BC

I- ~41

B-35

I~mum"



Q 0

00

41 7

E CA
0U0

0- a _ _

~6. ig it - -

.~U.-

0. 
4u M

~~ ;A E0 -

B-36



IA

LuIuI

LUU

u Ij
I U J U

B-3



4. 
C

US .0

< 4

0L

C6 E IM o

Co~~t -;a - -
0U

~~-.""OWL



-V a

IA to -

~~IV~O
0 ~ 0 -~-E f

4)4

LU %A R

t In

wC -A< *L

B-3



U..

u ,j k

In

IL

z

~< ;

U - i
-'.

LUk

B--



z C4

-CC4

0

z -7 -w&

~ CCe

o oc

~~41)

93L - *v I
LU C4 a tu

LU E.
.- a C

.xI M' *z tUJ.It
1~ 

el;

U. 0EU' ~w LU In z I% aL

W. Lut

B -41



.1>

uj~

< _

L6 -- -

uj.

> ,'

LLI
Lu -9

W. u

LU U

B-4



46-

aA U

-I CZ

404

ul 401~__ _

aI -3 .U. -l - -I
U. a

LIIi

3-43



a to

0

IL
,,U,

I t

•r 'w4 t

• a

0-44

w ii

- In
LU AV . "I:L U L LU ' S4 (

u ;a E!

"I. >U It

U. W .
LL

B -44



IF

A c

CL.- 0.0'

in 05

'40) .-~
Cb

LL'I

B-A



ki 'A

U C C

0 - _ _ _ _ __ _ _ _ _ _ _

a.; 0
5"
z L

~P z

4-4



ILI

< 0

. z I

< 0 v

z

U.U

U4.

.. ~ .~B-47



____

4'

oC

< o

U, -.

~ __ ____ __ E

aJt 6

-4-I
z~ CL

E Z-
LLI

a. W.

4B-48



%I.4

<

> C

< 4)

uJJ

I-. ' s

< .

LLxu

LU

B-4



----- -.--- ,

>:

<. 0

u.-

- -0

U.'

UL

47:

U~ U E

E~~

uja < a 4
I-ZSj

-I .j

4:B-50



-
> .~

CO.,

A)

hI
o
< 6

I...

En

cc I

6. wl

u

;A -

U U4

Z4

Z 4u
I~~l ~ UJ 4  Z

z I

ILI-
I''A

B-51



EI. 
0

< 0
- v _ _

i-
(U

-U(

0

~V

4.. 3, 'S -1 m

3U 0

I.6.

4- 05 4-,>

z0. '-

4.,

-. v- 0 .

LI. u ) v- DU~ 4

4-0

z a.-a-.<
u. >.E E - *~4 -

4

<. uE
U) U

0 ~U.
u)~o *

B-5



U.' UUV

zo
CL.,' " _ _ t_ _ _ _ _ '_ _ _ _

§0 t

<0 8 .;; ''

wvo

00oi
I- ~u 0-. - -

z xI

UZ '

bB-CL



X .0

L6 -

-: c
ulC

-a- ~ - q. _ _ __ _ _ __ _ __>_ _ _ _

Z CA c -

moCo

Le 0.. LUJ - -

U.- - -

A 2

0.v j, 0.

;;I I -.

01.
CAC

B-5



LL c.

VN

' U J

.g '8

-ý -L -

LU 0t .5R

0.- gj

.B-5



Nj 0

- - -i

,. C.
LL uj ;ZE

z = N- N _ _ _ __a_

~~, ~j 0 Ni
Li. u - - -

LLLi

uj

B-5



-j

u. R

tuJ

o

Z Si
cr E

Luu

a. A JO

=0
LL

0  12 .

z <I

<- >

uLu

B-57



z-

Lki0

cd

Zo
<I

oUD

ul W

0e E

U. ol.ýzS V ft
u, 0 4) C,'

*gg Ui , 7 U
LU

El 'aa.58u58



LI 

_

CL

ZZ<

uJ

z 

4

0U

< e

Sl Z SwW

z 

Ii

-u 
U 2 I 22. 

2.

I- u.o 
8

> > > >

A. 'A

LuL 0 In

", 0 2 
R 

.

E r
LU E 

E

0 0

LU ujLL

cd 

<

__________________ __ 
_ _ _ __ _ _ __ _ _ _ _ _ __ _ _ _ __ _ _ 

__ _ _ __ _ _ _ _ _ _ __ _ _ _ __ _ _ _ _ _ __5 

9_ 

_ __ _ _ _



4 ,

CD SO
< z

> E >

0 0)

L0 0

<- 0
-lu

LI-

~8J0)0

~~~~~ E _ _ _ _

o' 0 0
> 0- u,

VA: Ilk~~>

4) 4

ILi

B-60

< -Z
Z aI

Z <.

z. m

Z
cc <

7 -c

ce c~

U.

LU v
oE

z 4)
z (i

i C6

uj

U.11

B 6

ZU >

zo ~z

Zo-

EU

x Z

E > _ _

LL. >-

0 4)

4) 4

EU 0.-. ~ -

.2 a) -) ~ .

ui 2 ;Z, 2

B-6

>:

u

<.. *

ui~

>:>
<0

ýu. -- Z

I- .. 0

00

<Cc,
ILL

U U

LU

J -c

LA

B -63

030

i.X Z

-<

a)40 >

:33

E Zo

LL . -

U '
CY..)

E

< u

,,I-

U _

B -64

0

4cU

-C C
0

Ue

4))

ILI

.0 E

ii - 0 I)

LL2 0 -o ~ E '4 4-

) * .0 - I 4

I-~t E-a Ij4 4 .
() 0 +A .

.14 L. V

a. MV V IW

0) '06 E)

v~ Vowr~U -I - ~ k~ Z' E

B-65

As - 0- - _

0 U_
_ _ _

< -F- 0% 0

z 1

I- 1-z
>:U

u -

<4 X a.,O

'A~

L- 0 CEa 0

(Um 0.

6. >

- w E

L((C = i4(U , *

IVA -oE
0.

- '-0.
to ' J

n 0 -)(

(L 4)

B-66

Ow-l. _ _ _ _ _ __

r.

I-

oo

CL

- Ilu -T

- l I- E- -

0 l -

0

It

I -

B-6

CI

< v j O 7 k

*0 * Wl * 4

0

LU jJ

1-0 s

LU z Z:

LU~ ~ U.z

LUU

5-68

CLI

< N

t6 W >
a'

4Wo

-co

al

A2 A4---

UA

LU <

I.- ri

B-6

-Io " -•_•= - • _ _

bvo

to
... *

E •>

0 0

i- z• tZo

~ 4.U

O~OL

< .' aj

I l 0

0 0

E..- , 4)

-4- .o

,< ~ ~ a. v,. ,d V•,E* "-

;>"~b E •,
B-4-UI

VI)

...U 'O E V S E E 4k E U E

U-s. z -1

I.- Z.- m

B -70

OC

u 0

<0

4:E 0

hl.

4#- EJ 0
t~ E

UU

U.U

u LU

B--

*10

tn
>).

'I . - - -

-Cto

7- m0

ai~vi

o to

< 4) =)

UU U
W) - 'a

4.) CL~C ~
Cd uj

aL , ~ 5

- U .. EB-72

N -1

4A

-4 E

-J J-
U k * -v

0.
Ix U E

_ _ _ _ _ _ _N (_ _ _ _ _ _ _ _ _ _

~B-7

J -

M ,.

(A 0

,- ,

Cc

_ .1= • -. _ _ ,,, i

.-. ::wEI- -' L-S 6a

Z 0 v.S 0

to cc0. ~
>.4 -In

clu (au -4)ft r

4) z >

Cu v~ 0

r E E- 3 ~~
U~ 1 0J)u5 E It

Vi u ue E m -2 ;%. - j

-4k -~ U

IB-7

liiil

II
>

id 0

0~~ ~ ___ _ _ _ _ _ __ _ __ _ _

2AA
4.4)

U E-

Q -< u ,

U.U

=• , ._, .5 -

0. 4j

-7- 0 ~ 4

C-).• • B -~

B-75

mip-L
0 -

Cd
u-

-ce

0'

4) 4u

q~ E

00

u u~ =

zL E S E

~- .~ C

B-7

20

C

lu 4) 0fl

0.l

0 J

0 5
u * u'

<) ii

LU <'0

4:> 4- j~

u. V)

U ~ ~B-70

i* -... J -,,- - - , - * *-.... - .*! -,,,-.... . . ,

I ! -I-1

szo

t 0

I 4

0.o

E >

Z o7

U.,

E E

'A
.AA 4)

C'- .

I- L

LUu
U.) '4,

I(A Z4))

B--

0

-l 1-- - -E

0 , -z-

oJ v

E Eo <

-B-7

M.2

(U l

4)

EA

(U

z
0

z~~ ~~ ~ _ _ _ _ _ _ _ _ _ _ -- _ _ _ _ _ _

= m

-Cd -

B -8

0 0 I
>-

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _f

.3
21-

0

o> z
<- 0 Jv1

W a'
<

U-j L"-

F-0

UU

B 08

r- -

0C

-4w*0 % % 0

's
00

0 'A

IIID

o
i

u 1A

4)i i

.~IJ

< L

.Az,

0

u EI-U I

< wJ

cjt

0 2~

uL UJ3 C fg I (

U~ E

C~ 2ý

uCL 4-

a -L
> M A3. n) ='

_ _ _ _ _ _ _ _ _L i>_ _ __ _ _ _ _

B -83u

S 4
)

oJ

U-1

'U

LL.
a

-.
0

U-LU

~z
CL 4~ I

<

L
LU

2
--

_
_

__

_
_

_
_ _

_
_

_
_

_
_

_
_

_

o ~h __
__

< ~~B-84

>.

14)

I.-I

CUA

0 s

U1.-

< 78

B--

17~

z C
Z0

CL C

- cr o

0. o'u

SU I' .

C,' - -Z

CAA

LiL

B--

APPENDIX C

METRIC EXPLANATIONS

Appendix C contains a detailed explanation of each metric elenent. The explana-

tions are organized alphabetically by quality criteria and numerically by metric

acconym. A summary of the metric explanations is shown on the next several pages.

For each metric element, the definition (from Appendix B, Metric Tables) is stated,
and an explanation of the element is provided.

The contents of this appendix are based on the results of this contract, "Quality
Metrics for Distributed Systems", F30602-80-C-0330 and the results of contract

F30602-80-C-0265, "Software Interoperability and Reusability". This appendix in-

cludes a refinement and reorganization of metric explanation information initially

defined in RADC-TR-77-369 and RADC-TR-80-109.

C-I

METRIC EXPLANATION SUMMARY

CRITERIA ACRONYM METRICS

ACCURACY AY. I ACCURACY CHECKLIST

ANOMALY MANAGEMENT AM.I ERROR TOLERANCE/CONTROL CHECK
LIST

AM.2 IMPROPER INPUT DATA CHECKLIST
AM.3 COMPUTATIONAL FAILURES CHECKLIST
AM.4 HARDWARE FAULTS CHECKLIST
AM.5 DEVICE ERRORS CHECKLIST
AM.6 COMMUNICATION ERRORS CHECKLIST
AM.7 NODE/COMMUNICATIONS FAILURES

CHECKLIST

APPLICATION
INDEPENDENCE AI.1 DATA BASE SYSTEM INDEPENDENCE

AI.2 DATA STRUCTURE
AI.3 ARCHITECTURE STANDARDIZATION
AI.4 MICROCODE INDEPENDENCE
Ah.5 ALGORITHM

AUGMENTABILITY AG.I DATA STORAGE EXPANSION MEASURE
AG.2 COMPUTATION EXTENSIBILITY MEASURE
AG.3 CHANNEL EXTENSIBILITY MEASURE
AG.4 DESIGN EXTENSiB!LITY CHECKLIST

AUTONOMY AU. I INTERFACE COMPLEXITY MEASURE
AU.2 SELF-SUFFICIENCY CHECKLIST

COMMONALITY CL. I COMMUNICATIONS COMMONALITY
CHECKLIST

CL.2 DATA COMMONALITY CHECKLIST
CL.3 COMMON VOCABULARY CHECKLIST

COMMUNICATIVENESS CM. I USER INPUT INTERFACE MEASURE
CM.2 USER OUTPUT INTERFACE MEASURE

COMPLETENESS CP.I COMPLETENESS CHECKLIST

CONCISENESS CO. I HALSTEAD'S MEASURE

CONSISTENCY CS. I PROCEDURE CONSISTENCY MEASURE
CS.2 DATA CONSISTENCY MEASURE

DISTRIBUTEDNESS DI.) DESIGN STRUCTURE CHECKLIST

DOCUMENT ACCESSIBILITY DA. I ACCESS NO-CONTROL
DA.2 WELL-STRUCTURED DOCUMENTATION
DA.3 SELECTIVE USABILITY

C-2

METRIC EXPLANATION SUMMARY

CRITERIA ACRONYM METRICS __

EFFECTIVENESS EF. I PERFORMANCE REQUIREMENTS
EF.2 ITERATIVE PROCESSING EFFICIENCY

MEASURE
EF.3 DATA USAGE EFFICIENCY MEASURE
EF.4 STORAGE EFFICIENCY MEASURE

FUNCTIONAL OVERLAP FO. I FUNCTIONAL OVERLAP MEASURE

FUNCTIONAL SCOPE FS. 1 FUNCTION SPECIFICITY
F5.2 FUNCTION COMMONALITY
FS.3 FUNCTION COMPLETENESS

GENERALITY GE. MODULE REFERENCE BY OTHER MOD-
ULES

GE.2 IMPLEMENTATION FOR GENERALITY
CHECKLIST

INDEPENDENCE ID. I SOFTWARE SYSTEM INDEPENDENCE MEA-
SURE

ID.2 MACHINE INDEPENDENCE MEASURE

MODULARITY MO.2 MODULAR IMPLEMENTATION MEASURE
MO.3 MODULAR DESIGN MEASURE

OPERABILITY OP. I OPERABILITY CHECKLIST

r RECONFIGURABILITY RE. i RESTRUCTURE CHECK.IST

SELF-DESCRIPTIVENESS SD.I QUANTITY OF COMMENTS
SD.2 EFFECTIVENESS OF COMMENTS MEASURE
SD.3 DESCRIPTIVENESS OF LANGUAGE MEAS-

URE

SIMPLICITY SI.1 DESIGN STRUCTURE MEASURE
51.2 STRUCTURED LANGUAGE OR PRE-

PROCESSOR
51.3 DATA AND CONTROL FLOW COMPLEXITY

MEASURE
51.4 CODING SIMPLICITY MEASURE

SPECIFICITY SP.I SCOPE OF FUNCTION MEASURE

SYSTEM ACCESSIBILITY SA.I ACCESS CONTROL CHECKLIST
SA.2 ACCESS AUDIT CHECKLIST

C-3

METRIC EXPLANATION SUMMARY

CRITERIA ACRONYM METRICS

SYSTEM CLARITY SC.I INTERFACE COMPLEXITY
SC.2 PROGRAM FLOW COMPLEXITY
SC.3 APPLICATION FUNCTIONAL COMPLEXITY
SC.4 COMMUNICATION COMPLEXITY
SC.5 STRUCTURE CLARITY

SYSTEM COMPATIBILITY SY.I COMMUNICATION COMPATIBILITY
CHECKLIST

SY.2 DATA COMPATIBILITY CHECKLIST
SY.3 HARDWARE COMPATIBILITY CHECKLIST
SY.4 SOFTWARE COMPATIBILITY CHECKLIST
SY.5 DOCUMENTATION FOR OTHER SYSTEM

TRACEABILITY TR.A CROSS REFERENCE

TRAINING TN.I TRAINING CHECKLIST

VIRTUALITY VR. I SYSTEM/DATA INDEPENDENCE CHECK-
LIST

VISIBILITY VS.I MODULE TESTING MEASURE
VS.2 INTEGRATION TESTING MEASURE
VS.3 SYSTEM TESTING MEASURE

C-4

Criteria: Accuracy

Metric: AY. I Accuracy Checklist.
Each element is a binary measure indicating existence or absence of the
elements. The metric is the sum of the scores of the following applica-

ble elements divided by the number of applicable elements.

(1) Error analysis performed and budgeted to module.j
An error analysis must be part of the requirements analysis performed to
develop the requirements specification. This analysis allocates overall
accuracy requirements to the individual functions to be performed by the
system. This budgeting of accuracy requirements provides definitive
objectives to the module designers and implementers.

(2) A definitive statement of requirement for accuracy of inputs, outputs,
processing, and constants.

See explanation (1) above.

(3) Sufficiency of math library.

The accuracy of the math library routines utilized within the system is
to be checked for consistency witin the overall accuracy objectives.

(4) Sufficiercy of numerical methods.

The numerical methods utilized within the system are to be consistent
with the accuracy objectives.

(5) Execution outputs within tolerances.
A final measure during development testing is execution of modules and
checking for accuracy of outputs.

(6) Accuracy requirements budgeted to f unc tions /modules.
The budgeting of accuracy requirements is repeated at succeedingly
lower levels of design - during preliminary and detail design.

C-5

Criteria: Anomaly Management

Metric: AM.1 Error Tolerance/Control Checklist.

The metric is the sum of the scores given to the following elements

divided by the number of applicabie elements.

(1) Concurrent processing centrally controlled.

Functions which may be used concurrently are to be controlled centrally

to provide concurrency checking, read/write locks, etc. Examples are a

data base manager, I/O handling, error handling, etc.

(2) Errors fixable and processing continued.

When an error is detected, the capability to correct it on-line and then

continue processing should be available. An example is an operator

message that the wrong tape is mounted and processing will continue

when correct tape is mounted.

(3) When an error condition is detected, the condition is to be passed up to

calling routine.

The decision of what to do about an error is to be made at a level

where an affected module is controlled. This concept is built into the

design and then implemented.

(4) Any parallel processing centrally controlled.

When parallel processing is performed it is controlled by concurrent

inputs, by concurrent output checks, and/or by comparing output results.

C-6

Criteria% Anomaly Management

Metric: AM.2 Improper Input Data checklist.

The mnetric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) A definitive statement of requirement for error tolerance of input data.

The requirements specification must identify the error tolerance cap-

abilities desired.

(2) Range of values (reasonableness) for items specified and checked.

The attribute of each input item is to be checked f or reasonableness.

Examples are checking items if they must be numeric, alphabetic, posi-

tive or negative, of a certain length, nonzero, etc. These checks are to

be specified at design and exist in code at implementation.

(3) Conflicting requests and illegal combinations identified and checked.

Checks to see if redundant input data agrees, if combinations of para-

meters are reasonable, and if requests are conflicting. These checks

should be documented in the design and exist in the code at implementa-

tion.

(4) All input is checked before processing begins.
Input checking is not to stop at the first error encountered but to

continue through all the input and then report all errors. Processing is

not to start until the errors are reported and either corrections are

made or a continue processing command is given.

(5) Determination that all data is availa~ble prior to processing.

To avoid going through several processing steps before incomplete input

data is discovered, checks for sufficiency of input data are to be made

prior to the start of processing.

C-7

Criteria: Anomaly Manaltement

Metric: AM .3 Computational Failures Checklist.
The metric is the sum of the scores of the following appiicable elements

divided by the number of applicable elements.

(1) A definitive statement of requirement for recovery from computational

failures.
* The requirement for this type of error tolerance capability are to be

stated during requirements phase.

(2) Loop and multiple transfer index parameters range tested before use.

Range tests for loop indices and multiple transfers are to be specified at

design and to exist in code at implemenitation.

(3) Subscript checking.[

Checks for legal subscript values are to be specified at design and coded

during implementation.

(4) Critical output parameters reasonableness checked during processing.

Certain range-of-value checks are to be made during processing to

ensure the reasonableness of final outputs. This is usually done only for

critical parameters. These are to be identified during design and coded
during implementation.

Metric: AM.4 Hardware Faults Checklist.

The metric is the sum of scores from the applicable elements divided by

the number of applicable elements.

C-8

Criteria: Anomaly Management

(1) A definitive statement of requirements for recovery from hardware

faults.

The handling of hardware faults such as arithmetic faults, power failure,

clock interrupt, etc., are to be specified during the requirements phase.

(21 Recovery from hardware faults.
The design specitication and code to provide the recovery from the

hardware faults identified in the requirements must exist in the design

and implementation phases respectively.

Metric: AM.5 Device Errors Checklist.
The metric is the sum of the scores given to the following applicable

elements divided by the number of applicable elements.

(1) A definitive statement of requirements for recovery from device errors.

The handling of device errors such as unexpected end-of-files or end-of-

tape conditions and read/write failures are specified during the require-
ments phase.

(2) Recovery from device errors.
The design specification and code to provde the required handling of

device errors must exist in the design and impiementation phases respec-

tively.

Metric: AM.6 Communications Errors Checklist.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) A definitive statement of requirements for recovery from communication

errors.

Explicit requirements are to be stated for recovery from communication

errors.

C-9

Criteria: Anomaly Management

(2) Provisions for recovery from communication errors.

The preliminary design should reflect a design solution to the stated

requirements.

(3) Check sums computed and transmitted with all messages.

Check sums are a common form of detecting communication errors.

(4) Check sums computed and compared upon message reception.

Check sums are a common form of detecting communication errors.

Metric: AM.7 Node/Communications Failures Checklist.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) A definitive statement of requiremerts for recovery from

node/communication failures.
Explicit requirements are to be stated for recovery from

node/communication failures.

(2) Provisions for recovery from node/communication failures.

The preliminary design should reflect a design soiution to the stated

requirements.

(3) Adjacent nodes checked for operational status.

C,.. -king adjacent nodes is a common form of detecting node fai!ures.

(4) Alternate strategies for mess&ge routing.

Employing an alternate message routing strategy is a common way of

recovering from node/communication failures.

C-1O

Criteria: Application Independencef

Metrict AL.I Database System Independence.
Software which is free from database system reference has hilther reus-

ability.
The metric measure is based on how the module is Independent of the

database system.

(1) Free from database system reference.

The metric is based on the database system reference within a module.[

Metric: AI.2 Data Structure.

Generalized data structures which are easy to understand, flexible, and
extensible reduce the costs associated with reusing the software. The
software with control of data structure has enhanced modifiability, and
it tends to be more reusable. The metric is the sum of the scores of
the following applicable elements divided by the number of applicable

elements.

() Data in' parameter list, data structure described parametrically.
Parametric definitions of data structures will reduce the meuse software

costs. The metric is based on how many data items could be para-
metrized and parametrized data items.

(2) Data communicated through common storage region and with adequate

comments.
To reduc(- the software reuse costs the. data should be centrally con-
trolled such as through global storage. Then common data in a module

must have adequate explanations. This is a binary measure.

(3) Control of database structures, both global and local, i.e., all data
centrally controlled and symbolically defined and referenced.
See explanation for (2) above.

C-11

Criteria: Aplication Inhependnce

(4) Logical processing independent of data storage specif icatlon and require-

ment.
The software with logical processing independent of data storage will
tend to be more reusable. The measure is based on the number of

modules which do not comply.

(5) Each module has code comments about data items ,lescription including

global & parameter input/output and local variables.

See explanation for (2) above.

Metrict AI.3 Architecture Standardization.

Standardization of computer architecture can increase the potential

reuse of software by increasing the number of environments in which the

software can be executed without change. The metric is the sum of the

scores of the following applicable elements divided by the number of[
applicable elements.

(1) Module is free from computer architecture reference.
When software is independent from computer architecture reference it

tends to be more reusable. This is a binary measure.

(2) Module is in standard .42 bits computer architecture (Nebula).

When software is in a standard computer architecture then it will be

easier to reuse in another computer with standard architecture. This is

a binary measure.

(3) Code statements are free from machine architecture.

See explanation for (1) above.

C-12

Criteria: 2pA_ ýcation Independence

Metric: AI.4 Microcode Independence.

Using the microcode or machine language code in software will reduce

the number of environments where software can be reused and also

reduce the software flexibility. The metric measure is based on how the

module is free from microcode instructions.

(1) Number of modules used microcode ir.struction.

The metric is based on the microcode references within a module.

Metric: AI. Algorithm.

An algorithm that functions well over a wide range of inputs will

generally require less modification before it can be reused. The use of

table driven 2lgorithms will produce highly reusable software which can

be easily adapted to different applications. The metric is the sum of

the scores of the following applicable elements divided by the total

number of applicable elements.

(1) Valid range.

The range of inputs the function algorithm can handle. The metric ,s

based on the number of the domains the algorithm works for.

(2) Is the algorithm table driven?

The table-driven algorithm can be easily adapted to different applica-

tions. 'he metric is a binary measure.

(3) Is the algorithm certification available?

The software with algorithm ccrUiiication available tends to be more

reusable. The metr;.z is a binary measure.

(4) Is the algorithm test data available?

See explanation for (3) above.

C-13

Criteria: Aolication Independence

(5) Each module has code comments about algorithm description.

The algorithm usage should be explained in the code comments. The

measure is based on the number of modules which do not follow this

practice.

C-14

WN

Criteria: Aurtmentability

Metric: AG. I Data Storage Expansion Measure.

The metric is the sum of the scores of the following applicable element.s

divided by the number of applicable elements.

(1) Logical processing independent of storage specification/requirements.

The logical processing of a module is to be independent of storage size,

buffer space, or array sizes. The design provides for variable dimensions

and dynamic array sizes to be defined parametri-cally. The metric is
based on the number of modules containing hard-coded dimensions which

do not exemplify this concept.

(2) Percent of memory capacity uncommitted.

The amount of memory available for expansion is an important measure.j

This measure identifies the percent of available memory wbich has not

been utilized in implementing the current system.

(3) Percent auxilliary storage capacity uncommitted.

See explanation for (2) above.

Metric: AG.2 Computation Extensibility Measure.

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Accuracy, convergence, timing attributes which control processing are

parametric.
A module which can provide varying degrees of convergence or timing to

achieve greater precision provides this attribute of extensibility. Hard-

coded control parameters, counters, clock values, etc. violate this meas-

ure. This measure is based on the number of modules which do not

exemplify this characteristic.

Criteria: Augmtntab:i~iq

(2) Modules table driven.
The use of tableF within a module facilitates different representations

and processing characteristics. This measur-e which can be applied

during design and implementation is based on the number of modules

which are not table driven.1<(3) Percent of speed capacity uncommitted.

Acertain function may be required in the performance requirements

specification to be accomplished in a specified time for overall timing

objectives. The amount of time not used by the current implementation

of the function is procesz:ing time available for potential expansion of[

computational capabilities. This measure identifies the percer~t of total

processing t'~me that is uncommitted.

Metric: AG.3 Channel Extensibility Measure.

The metric is the sum of the scores given to the following elements '
divided by the number of applicable elements.

(1) Spare 1/0 channel capacity (by peripheral).H
A load will be placed on the channels to each peripheral because of the

design solution. The amount of channel capacity which is uncommitted
is the amount available for potential expansion.

(2) Spare communication channel capacity.

A load will be placed on each communication channel because of the

design solution. The amount of communication channel capacity which is

uncommitted is the amount available for potential expansion.

Metric: AG.4 Design Extensibility Checklist.
The metric is the sum of the scores given to the following elements
divided by the number of applicable elements.

C- 16

Criteria: Augmentability

(1) Processors, communication links, memory devices, and peripherals com-

patible (of a common vendor or model).

It is desirable to have network hardwarz compatible as this minimizes

interface complexity and eases the task of expansion.

(2) Documentation reveals performance price of software/system for en-
hancement trades.

The cost required to achieve th# specified performance levels has seldom
been documented; yet this is an essential element in performing trades

for enhancing the system.

(3) Specifications identify new technology tradeoff areas !or software.

This information would be useful for future changes in the software and

the system.

(4) Software specifications include requirements for the criteria of the qual-

ity factor expandability.

Building in the expansion capability will minimize future costs.

C-1

C-17

Criteria: Autonomy

Metrict AU. 1 interface Complexity Measure.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Processes/functions separated as logical "wols to minimize interface

complexity.
Minimizing interface complexity in the functional design will aid in

keeping interfaces simple in the detail design.

(2) Interface code.

The greater the amount of interface code, in general, the more complex

is the interface. This measure identifies the fraction of non-interface

code.

(3) Interface modules.

The greater number of interface modules, in general, the more complex

is the interface. This measure identifies the fraction of non-interface

modules.

(4) Communication loading.
The complexity of the interface is reflected in part by the percentage of

use.
This measure identifies the fraction of idle interface communication

time.

Metric: AU.2 Self-sufficiency Checklist.
The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Software volatility - each CPU/system has separate power supply.

System software vulnerability is reduced by increasing the independence

of each CPU/system.

Criteria: Autonomy

(2) Each scheduling unit (i.e., executive, operating system) tests its own

operation, communication links, memories, and peripherals.

System software vulnerability jq reduced through independent node self-

test.

(3) Software system includes word-processing capability.

System autonomy is enhanced by being able to produce documentation

on-site.

1

I-

C-19

Criteria: Commonality

Metric: CL.I1 Communications Commonality Checklist.
The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) DefinitiVe statement of requirements for communication with other sys-

tems.
During the requirement phase, the communication requirements with
other systems must be considered. This is a binary measure of the
existence of this consideration.

(2) Protocol standards established and followed for network process control.
The communication protocol standards for communication with other

system,, are to be established during the design phase and followed

during implementation. This binary measure applied at each of these
phases indicates whether the standards were established and followed.

(3) Single module interface for input (from another system).
The more modules which handle input the more difficult it is to inter-
face with another system and implement standard protocols. This meas-

ure is based on the reciprocal of the number of modules which handle
input.

(4) Single module interface for output (to another system).
For similar reasons as (3) above this measure is the reciprocal of the

number of output modules.

(.5) Specific requirements for network process control.

Network process control requirements should be specified during the
requirements analysis phase and consider all nodes in the network.

C-20

Criteria: Commonlity

(6) Specific requirements for user se•,.on control.
Requirements for the control cf a u~er session on the network should be
specified during the requlremc.nts analysis phase and consider all nodes In

the network.

(7) Specific requirements for cammunlcation routing strategy.

Requirements for communication routing should be specified during the

requirements analysis phase and consider all nodes in the network con-

figuration.

(8) Protocol standards established and followed for user session control.

The design and implemerntation should comply with network-wide proto-

col standards.

(9) Protocol standards established and followed for communication routing.

The design and implementation should comply with nmtwork-wide proto-

col standards.

(10) Number of systems responding correctly to successfully complete hand-

shaking. The larger the number of systems which must respond correct-

ly, the greater the effort required.

(11) Low time dependency on hndshaking. High time dependencies impose

greater constraints on computation and response times, which will in-

crease the total effort.

(12) No communication time dependency.

If the communication function has time dependencies, such as freshness

of data or response to input data within certain time limits, then the

effort increases.

C-21

ro ,

Criteria: Commonality

(13) Number of other Systems this System will interface with.
The n umber Of systems with which this system must interoperate should

greatly affect the total Interoperability effort.

(14.) No timing dependency on data freshness.
The requirement for data freshness will increase effort to meet timing

factors.

(15) Operating procedures known.

The operating procedures used with the system must be known so the

requirements can be understood in context.

Metric: 'ZL.2 Data Commonality Checklist.

The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Definitive statement for standard data representation for communication
with other systems.

This is a binary meas'ttre of the existence of consideration for standard -
data represen~tation between systems which are to be interfaced. This

must be addressed and measured in the requirements phase.

(2) Translation standards among representations established and followed.
More than one translation from the standard data representations used

for interfacing with other systems may exist within a system. Standards
for these translations are to be established and followed. This binary
measure identifies if the standards are established during design and

followed during implementation.

(3) Single module to perform each translation.
This measure is the reciprocal of the maximum number of modules which

perform a translation.

C-22

Criterla: Co mmontlitx

Metrics CL.3 Common Vocabulaty Checklist.
The binary metric is the single value answer to the question of common
vocabulary use among Interoprating systems. U there Is mote than one
system with which the subject system is to Interoperate, then the value
of this metric is the average of the Individual metrics for each inter-
operating system.

(1) DM both projects use the same technical vocabulary with identical mean-
ings? According• to published rnatirial on intertopersbiiJty, one of the

most prevalent and pervasive probilems Is the use of Inconsistent terrnin-

ologits. Projects may use different voabularies with the sumu mean-

ings, or use the same vocabulary wlth different meings. As a result,
peole either don't understand each other and know it, or don't under-
stand each other and don't know it. Either way# interopeability pro-
bWems are the sur. resulv.

C2

C-23

Criteriat Commnicativeness

Metrics CM.I User Input Interface Measure.
The metric 's the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Default values defineJ.

A method of minimizing the amount of input tequired is to provide
defaults. This measure, applied during design and implementation, is
based on the number of defaults allowed divided by the total number of
input

parameters.

(2) Input format uniform.
The greater te number of Input formats there are the more difficult
the system is to use. This measure is based on the total number of input

formats.

(3) Each input record self-identifying.
Input records which have seli identifying codes enhance the accuracy of

user inputs. This measure is based on the number of input records that

are not self identifying divided by the total number of Input records.

(4) input can be verified by user prior to execution.

The capability, displaying input upon request or echoing the input auto-

matically, enables the use.- to check his inputs before processing. This is

a binary measure of the existence of the design and impiementation of

this capability.

(5) Input terminated by explicitly defined logical end of input.

The user should not have to provide a count of input cards. This is a

binary measure of the design and implementation of this capability.

C-24

Criteria: Communicativeness

(6) Provision for specifying input from different media.
The flexibility of Input must be decided during the requirements analysis

phase and followed through during design and implementation. This is a

binary measure of the existence of the consideration of this capability

during all three of these phases.

Metric: CM.2 User Output Interface Measure.

I The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Selective output controls.
The existence of a requirement for, design for, and implementation of

selective output controls is indicated by this binary measure. Selective
controls include choosing specific outputs, output formats, amount ofA
output, etc.

(2) Outputs have unique descriptive user oriented labels.
This is a binary measure of the design and implementation of unique

output labels. In addition, the labels are to be descriptive to the user.
This includes not only the labels which are used to reference an output

report but also the title, column headings, etc. within that repcdrt.f

(3) Outputs have user oriented units.

This is a binary measure which extends (2) above to the individual output

(4) Uniform output labels.

This measure corresponds to (2) above and is the reciprocal of the

number of different output formats.

C-25

Criteria: Communicativeness

(5) Logical groups of output separated for user examination.
Utilization of top of page, blank lines, lines of asterisks, etc., provide
for easy identification of logically grouped output. This binary measure
identifies if these techniques are used during design and implementation.

(6) Relationship between error messages and outputs is unambiguous.
This is a binary measure applied during design and implementation which
identifies if error messages will be directly related to the output.

(7) Provision for redirecting output to different media.

This is a binary metric which identifies if consideratiov, is given to the
capability to redirect output to different media during requirements
analysis, design, and implementation.

(8) Standard user interfaces for network information and data ac,:-.ss.
This is a binary metric which considers a common user language for
accessing information/data throughout the network. This capability re-

lieves the user of the need to know the languages of different nodes.

C-26

Criteria: Completeness

Metric: CP.I Completen-ss Checklist.

This metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Unambiguous requirements/references for input, function, and output.

Unique references to data or functions avoid ambiguities such as a

function being called one name by one module and by another name by

another module. Unique reietences avoid this type of ambiguity in all

three phases.

(2) All data references defined, computed, or obtained from an external

source.

Each data element is to have a specific origin. At the requirements

level only major global data elements and a few specific local data

elements may be available to be checked. The set of data elements

available for completeness checking at the design level increases sub-

stantially and is to be complete at implementation. j
(3) All defined functions used.

A function which is defined but not used during a phase is either

nonfunctional or a reference to it has been omitted.

(4) All referenced functions defined.

A system is not complete at any phase if dummy functions are present

or if functions have been referenced but not defined.

(5) All conditions and processing defined for each decision point.

Each decision point is to have all of its conditions and alternative

processing paths defined at each phase of the software development.

C-27

Criteria: Completeness

The level of detail to which the conditions and alternative processing are
described may vary but the important element is iat all alternatives
are described.

(6) All defined and referenced cUlling sequence parameters agree.
For each interaction between modules, the full complement of defined
parameters for the interface is to be uw -d. A par Licular call to a
module should not pass, for example, only five of the six defined para-
meters fcr that module.

(7) All problem reports resolved.
At each phase in the development, problem reports are generated. Each
is to be closed or a reolution indicated to ensure a complete product.

C-28

x , . ,

Criteria: Conciseness

Metric: CO.1 Halstead's Measure.

The metric is based on Halstead's concept of length (HALSM77).

The observed length of a module is

No =NI + N2 where:
N I = total usage of all operands in a module

N2 = total usage of all operands in a module

The calculated length of a module is

Nc nj log2nj + n2log2n2 where:

n I number of unique operators in a module

n2= number of unique operators in a module

The metric is normalized as follows:

Nc - No

1- N0 or, !.

Nc - No I

0 if No greater than I

At a system level the metric is the averaged value of all the module metric values.

C-29

Criteria: Consistency

Metric: CS.1 Procedure Consistency Measure.
The metric is the sum of tho scores of the following applicable elements

divided by the number of applicable elements.

Wi Standard design representation.

Flow charts, HIPO charts, Program Design Language -whichever form of
design representation is used, standards for representing the elements of
control flow are to be established and followed. This element applies to
design only. The measure is based on the number of modules whose
design representation does not comply with the standards.

(2) Calling sequence conventions.
Interactions between modules are to be standardized. The standards aie
to be established during design and followed during implementation. The
measure is based on the number of modules which do not comply with
the conventions.

(3) Input/output conventions.
Conventions for which modules will perform I/O, how it will be accom-
plished, and the 1/0 formats are to be established and followed. The
measure is based on which modules do not comply with the conventions.

(4) Error handling conventions.
A consistent method for error handling is required. Conventions estab-
lished in design are followed into implementation. The measure is based
on the number of modules which do not comply with the conventions.

C- 30

Criteria: Consistency

Metric: CS.2 Data Consistency Measure.

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Standard data usage representation.
In concert with CS.1 (1), a standard design representation for data usage

is to be established and followed. This is a design metric only, iden-nI

tifying the number of modules which violate the standards.

(2) Naming conventions.

Naming conventions for variables and modules are to be established and

followed.

(3) Consistent global definitions.

Global data elements are to be defined in the same manner by all

modules. The measure is based on the number of modukl in which the

global data elements are defined in an inconsistent manner for both

design and implementation.

(4) Requirements for verifying database consistency/concurrency.

In a system where multiple versions of the same information and data
exist at different nodes, requirements should be stated to verify consis-

tency and concurrency of the multiple versions.

(5) Procedures for verifying database consistency/concurrency.

As in (4) above, procedures should be developed for verifying

consistency/concurrency of multiple versions.

C-31

Criterla: Distributedness

Metric: DI.I Design Structure Checklist.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Design organization identifies all functions and interfaces.

Identification of the complete set of functions and interfaces is essential

to the design.

(2) Database organization identifies all data and data flow.

Identification of the complete set of data and flows is essential to the

design.

(3) Specific requirements for information distribution within the database.

Early decisions are required on how to distribute information within a

network.

(4) Provisions for file/library access from other nodes.

Network nodes will rely on other nodes for some information or for

backup data.

(5) Provisions for selecting alternate processing capabilities.
A versatile network design will provide alternate processing sources.

(6) Critical system functions distributed over redundant elements/nodes.

System vulnerabilty is reduced by distributing critical functions across

different nodes.

(7) Distribution of control functions ensures network operation/integrity

under anomalous conditions.

Again, a good network design will take advantage of the redundant

processing capability and distribute network control functions across

different nodes.

C-32

jQ'Q

I
Criteria: Distributedness

(8) Logical structure and function separated in the design.

Logical entities can be grouped under one function or can be separated

among several functions. It is important to distinguish between logical

structure and function.

(9) Physical structure and function separated in the design.

Functions can be grouped within one physical structure or can be separa-

t1.d among several physical structures. It is important to distinguish

between physical structure and function.

(10) Number of nodes that can be removed and still have each node able to

communicate with each remaining node (Kleitman's algorithm).

The node connectivity is the minimum number of nodes whose removal

will disconnect the two nodes. If the two nodes have an arc linking

them, there is no way to disconnect them by removing nodes, not even

by removing all n - 2 of the remaining nodes in an n iode network. In

this case the node connectivity is defined as n - 1. If a network can

withstand the loss of k nodes, it can also withstand the loss of k links,

by Whitney's theorem. An algorithm due to Xleitman (1969) is as

follows. Pick any node at random and call ',t N1 and every other node in

the network is at least k + 1.

Now delete N, and all its attached links from the network and choose

another node, N2 . Verify that this node has at least a node connectivity

of k with every other node. Next, remove N2 and its attached links

from the network and choose a third node, N3 . Verify that N3 has at

least a node connectivity of k - I with each of the remaining nodes.

Continue this process until you have verified that some node Nk + I is

1-connected to all nodes of the remaining network. At this point the

algorithm terminates.

Kleitman, D.: "Methods for Investigating the Co.,nectivity of Large

Graphs," IEEE Tranc. Circuit Theory, vol. CT16, pp. 232-233, May

1969.

C-33

Criteria: Distributedness

S. Even (1975) has devised another way to check for comectivity k.

Even, S.: Graph Algorithms. Potomac, Md.: Computer Science Press,

1979.

Even, S.: "An Algorithm for Determining Whether the Connectivity of a

Graph Is at Least k,," SIAM 3. Comput., vol. 4, pp. 393-396, Sept.

1975.

C3
>I

C-34

'-----k'-- --.l,4I.&

Criteria: Document Accessibility

Metric: DA.I Access No-Control.

(1) Is there no access control to the software document?
This metric provides a measure of the ease of access to software

documents.

Metric: DA.2 Well-Structured Documentation.

The metric is the sum of the following applicable elements divided by

the number of applicable elements.

(1) Clearly and simply written documents.

When the documents are the more clearly and simply written, the soft-

ware programs are the easier to understand and are more useful. This is

a binary measure.

(2) Neat and carefully drawn software flow charts with adequate informa-

tion and explanation.

When the documents provide system software flow charts and explain the

functions performed, they are more useful. This is a binary measure.

(3) Hierarchical structured table of contents used in documents.

The documents with hierarchical structure will make it easy to skim

through until the desired information is found, then read in detail. Then
the information in the documents is more accessible. This is a binary

measure.

(4) Inde:" system used in documents.

Documents with an index system will make it easier and faster to locate
the required information. Then the contents of the documents are more

accessible. This is a binary measure.

(5) Separate volumes based on function provided.

See explanation for (3) and (4) above.

C-35

Criteria: Document Accessibilqy

(6) Provide global information about the functional range of the system.

The documents should have global information about the range of the

function performed. Then the documents are more useful. This is a

binary measure.

(7) Describe the functions performned.

The documents should describe the functions performed in the system.

This is a binary measure.

(8) Describe the algorithm used and limitations.

The documents should describe the algorithm and their limitations. Then
the user will know if they are applicable or not for the desired applica-

tion. This is a binary measure.

(9) Describe the relationship between functions.

The documents should describe the relationship between the functions.

Then the documents will be more useful. This is -a binary measure.

(10) Provide software program listing.

The documents ;hould contain the program source listing. Then the

information in the documents is complete. This is a binary measure.

Metric: DA.3 Selective Usability

The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Options available to the user so that selected computation or output

feature may be requested.
The software with these options tends to be more reusable. This is a
binary measure.

C-36

Criteria: Document Accessibility

(2) Modules allow for modifying resource utilization i.e., through use vari-

able dimensioned arrays.

The software allowing resource utilization modification tends to be more

reusable. This is a binary measure.

(3) Required new functions can be satisfied by using existing design.

The required functions for the new application can generally be satisfied

by adaptation of functions/modtles from the existing design. The meas-
ure is based on the number of existing functions associated with the

required new functions. This is an application-dependent metric.

C3

C-37

S..••_•._ • • . • ;_., .• ,..'••. - ". ..7. . ,. . •

Criteria: Effectiveness

Metric: EF. I Performance Requirements.

Performance requirements and limitations specified and allocated to

functions/design.

Performance! requirements for the system must be broken down and allo-

cated appropriately to the functions and momules during the design. This

metric simply identifies if the performance requirements have (1) or

have not (0) been allocated during the design.

Metric: EF.2 Iterative Processing Efficiency Measure.

The metric at the module level is the sum of the scores of the following

applicable elements divided by the number of elements. At the system

level it is an averaged score for all of the modules.

(1) Non-loop dependent computations kept out of loop.

Such practices as evaluating constants in a loop are to be avoided. This

measure is based on the number of non-loop dependent statements found

in all loops in a module. This is to be measured from a detailed design

representation during design and from the code during implementation.

(2) Performance optimizing compiler/assembly language used.

This is a binary measure which identifies if a performance optimizing

compiler was used (1); or if assembly language was used to accomplish

performance optimization (1); or if neither were used (0).

(3) Compound expressions defined once (implementation only).

Repeated compound expressions are to be avoided from "n e!flc"zrncy

standpoint. This metric is based on the num'er of compound expressions

which appear more than once.

(4) Number of overlays.

The lise of overlays requires overhead with respect to processing time.

C-38

Criteria: Effectiveness

This measure, the reciprocal of the number o: overlays, reflects that
overhead. It can be applied during design, when the overlay scheme is
defined, and during implementation.

(5) Free of bit/byte pack ing/unpack ing in loops.
This is a binary measure indicating the overhead involved in bit/byte

packing and unpacking. Placing these activities within loops should be
avoided it possible.

(6) Module linkages.

This measure essentially represents the inter-module communication

during module -to - module communication.

(7) Operating system linkages.

This measure represents the module to OS communication overhead. The
measure is based on the amount of execution time spent during module

to OS communications.

Metric: EF.3 Data Usage Efficiency Measure.I The metric at the module level is the sum of the scores of the followingf applicable elements divided by the number of applicable elements. The
system metric is the averaged value of all of the module metric values.

I(1) Data grouped for efficient processing.
The data utilized by any module is to be organized in the data base,
buffers, arrays, etc., in a manner which facilitates efficient processing.
The data organization during design and implementation is to be exam-

ined to provide this binary measure.

C -39

Criteria: Effectiveness

(2) Variables initialized when declared.

This measure is based on the number of variables used in a module which

are not initialized when declared. Efficiency is lost when variables are

initialized during execution of a function or repeatedly initialized during

iterative processing.

(3) No mix-mode expressions.

Processing overhead is consumed by mix-mode expressions which are

otherwise unnecessary. This measure is based on the numtber of mix-

mode expressions found in a module.

(4) Common choice of units/types.

For similar reasons as expressed in (3) above this convention is to be

followed. The measure is the reciprocal of the number of operations

performed which have uncommon units or data types.

(5) Data indexed or referenced for efficient processing.

Not only the data organization, (1) above, but the linkage scheme

between data items effects the pr',cessing efficiency. This is a binary

measure of whether the indexing utilized for the data was chosen to

facilitate processing.

(6) Static data.
This metric measures the numbers of data items vwhich were referenced h
but not modified during execution.

(7) Dynamic data.

This metric meajures the number of data items which were modified

during execution.

C-40

Criteria: Effectiveness

Metric- EF.A Storage Efficiency Measure.

The metric at the module level is the sum of the scores of the following

applicable elements divided by the number of applicable elements. The

metric at the system level is the averaged value of all of the module
metric values.

(1) Storage requirements allocated to design.
The storage requirements for the system are to be allocated to the

individual modules during design. This measure is a binary measure of
whether that alloca-ion is explicitly r;,ade (I) or not (0).

(2) Virtual storage facilities used.

The use of virtual itorage or paging techniques enhances the storage
efficiency of a system. This is a binary measure of ;,hther thpse
techniques are planned for and used (1) or not (0).

(3) Common data defined only once.
Often, global data or data used commonly are defined more than once.
This consumes storage. This measure is based on the number of varia-

bles that are defined in a module that have been defined elsewhere. Ij
Ii

(4) Program segmentati'on.

Efficient segmentation schemes minimize the maximum segment length
to minimize the storage requirement. This measure is based on the
maximum segment length. It is to be applied during design when
estimates are available and during implementation.

(5) Dynamic memory management utilized.
This is a binary meastire emphasizing the advantages of using dynamic

memory management techniques to minimize the amount of storage

required during execution. This is planned during design and used during

implementation.

C-41

L..

Criteria: Ef fectiveness

(6) Data packing used.
While data packing was discouraged in EF.2 (5) in loops because of the
overhead it adds to processing time, in general it is beneficial from a
storage efficiency viewpoint. This binary measure applied during imple-
mentation recognizes this fact.

(7) Storage optimizing compiler /assembly language used.
This binary measure is similar to EF.2 (2) except from the viewpoint of
storage optimization.

(8) Database files/libraries stored at only one node.
Avoiding multiple files/libraries increases system storage optimization.

C-42

Criteria: Functional Ovtrlap

Metric: FO.1 Functional Overlap Measure.

This metric refers to the overlap of functional responsibility or computa-

tion between the two systems that must interoperate. The metric is the

sum of the scores of the following applicable elements divided by the

number of applicable elements.

(I) Number of duplicated functions in the system that are to interoperate.

When two systems must be made to interoperate, functions which are

duplicated in both systems must be examined to determine any potential

conflict. This examination for function conflict will require additional

effort to assess the two functions and the impact each may have on the

other when the systems interoperate.

(2) Number of duplicate functions to be de!eted in one or the other system.

The presence of the same functions being implemented or accomplished

in both systems is not necessarily detrimental to interoperability, espec-

ially if each function remains independent of the other and there is no

need to communicate. However, if one of the systems is assigned unique

responsibility for that function, and the corresponding function is to be

deleted from the other system, then the amount of work to achieve

irieroperability is increased.

(3) Number of duplicated function pairs to be synchronized.

If the duplicated functions in each system must be synchronized, then

the effort to achieve interoperation will be greater than that in (2)

because the problems of synchronization are usually more complex than

those of deleting one function. Various timing, format, content, and

operational considerations may arise while attempting synchronization of

the two systems.

C-43

i i• .. ,. ,.•., :•_ " _- • _:,.,• =

Criteria: Functional Overlap

(4) Number of duplicated function pairs requiring redundancy management

logic to combine them.
The most complex resolution of duplicated functions is the use of a
redundancy management scheme. This calls not only for intimate com-
munication between the duplicated functions, but also calls for complex
and intricate logic to resolve apparent differences, identify malfunctions,
and determine and implement a reconfiguration approach.

C-44

Criteria: Functional Scope

Metric: FS.1 Function Spe-cificity
The degree to which all mod:ules in the system perform single integral

well defined functions. The metric is the sum of the scores of the

following applicable elements divided by the number of applicable ele-

ments.

(1) Number of functions performed per module.
A module ideally should perform a single integral function. This mea-
sure iý, based on the number of functions performed in a module.

(2) Each module has code comments about functional description.

Comments about functions performed in the module are extremely valu-
able to the person who wants to reuse this module. The measure is

based on the number of modules which do not comply.

Metric: FS.2 Function Commonality

This metric refers to the usefulness, to other applications, of the func-

the following applicable elements divided by the number of applicable

(1) Is the function constructed in a manner which facilitates or encourages
its use elsewhere either in part or in total?
The software constructed in the above manner tends to be more reus-
able. This is a binary measure.

(2) Are the input quantities well defined?
When input quantities are well defined, the reuse task is easier. This is

a binary measure.

(3) Are the input formats well defined?

See explanation for (2) above.

C-45

Criteria: Functional Scope

(4) Are the outputs or database well defined and easy to interpret?
A similar explanation to (2) above is applicable here.

(5) Does the function performance satisfy one of the specified require-
ments?
This is an application dependent metric.

Metric: P5.3 Function Completeness]
The degree to which a system performs a total function in terms of user
need. This is an application dependent metric.

(1) Number of function requirements satisfied in the specified requirements.
The metric is the number of user requirement3 satisfied divided by the
total number of user requirements. The value is computed for the
system metric.

C -46

Criteria: Generality

Metric: GE. Module Reference By Other Modules.

(1) Number of -nodules which are relerenced by other modules.

This metric provides a measure of the generality of the modules as they

are used in the current system. A module is considered to be more

general in nature if it is used (referenced) by more thz..) one module. v
The number of these common modules divided by the total number of

I modules provides the measure.

Metric: GE.2 Implementation for Generality Checklist.

This metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.I

(1) input, processing, output functions are not mixed in a single function.

A module which perfo~rms 1/0 as well as processing is not as general as a

module which simply accomplishes the processing. This measure is based
on the number of modules that violate this concept at design and

implementation.

(2) Applicat.-n and machine dependent functions are not mixed in a single
module.
Any references to machine dependent functions within a module lessens

its generality. An example would be referencing the system clock for

timing purposes. This measure is based on the number of machine

dependent functions in a module.

(3) Processing not data volume limited.

A module which has been designed and coded to accept no more than

100 data item inputs for processing is certainly not as general irn nature

as a module which will accept any volume of input. This measure is

based on the number of modules which are designed or implemented to

be data volume limited.

C-47

Criteria: Generality

(4) Processin~g not data value limited.
A previously identified element, AM.2 (2) of Anomaly Management dealt

with checking input for reasonableness. This capability is required to

prevent providing data to a functiun for which it is not defined or its

t degree of precision is not acceptable, etc. This is necessary capability
from an error tolerance viewpoint. From a generality viewpoint, the

smaller the subset of all possible inputs to which a function can be

applied the less general it is. Thus, this measure is based on the number

of modules which are data value limited.

C-49

Criteria: Independence

Metric: ID.1 Software System Independence Measure

The metric is the sum of the scores of the following applicable eements

divided by the number of applicable elements.

(1) Dependence on software system utility programs, system library routines,

and other system facilities.

The more utility programs, library routines, and other system facilities

that are used within a system, the more dependent the system is on that

software system environment. A SORT utility in one operating system is

unlikely to be exactly similar to a SORT utility in another. This

measure is based on the number of references to system facilities in a

module divided by the total number of lines of code in the module.

(2) Common, standard subset of language used

use of ncnstandard constructs of a language that may be available

, certain compilers cause conversion problems when the software is

moved to a new software system environment. This measure represents

that situation. It is based on the number of modules which are coded in

a -standard subset of the language. The standard subset of the

jage is to be established during design and adhered to during imple-

mentation.

Metric: ID.2 Machine Independence Measure

The metric is the sum of the scores of ,h-. following applicable elements

divided by the number of applicable e!ernents.

(1) Programming language used available on other machines.

This is a binary measure identifying if the programming language used is

available (1) on other machines or not (0). This means the same version

and dialect of the !anguage.

(2) Free from input/output references.

Input and output references bind a module to the current machine

configuration. Thus the fewer modules within a system that contain

C-49

S-• " '" - -- " ,, , --. -. , .• = . . -- -. ,- - /

Criteria: Independence

input and output references, the more localized the problem becomes
when conversion is considered. This measure represents that fact and is
based on the number of 1/0 references within a module.

(3) Code is independent of word and character size
Instructions or operations which are dependent on the word or characterI
size of the machine are to be either avoided, or parametric, to facilitate
use on another machine. This measure, applied to the source code
during implementation, is based on -the number of modules which contain
violations to the concept of independence of word and character size.

(4) Data representation machine independent
The naming conventions (length) used are to be standard or compatible
with other machines. This measure is based on the number of modules
which contain variables which do not conform to standard data represen-
tat ions.

I-5

Criteria: Modularit~y

Metric: MO.2 Modular Implementation Measure.
The metric is the sumn of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Hierarchical structure.
The measure refers to the modular implementation of the top down
design structure mentioned in SU. (1). The hierarchical structure ob-
tained should exemplify the following rule: interactions between mod-
ules are retricted to flow of control between a predecessor module and
its immediate successor modules. This measure is based on the number
of violations to this rule.

(2) Moduie size profile.
The standard module size of procedural statements can vary. 100
statements has been mentioned in the literature frequently. This mea-
sure is based on the number of procedural statements in a module.

(3) Controlling parameters defined by calling module.
The next four elements further elaborate on the control, and interaction
between modules referred to by (1) above. The calling module defines
the controlling parameters, any input data required, and the output data
required. Control must also be returned to the calling module. This
measure is based on the number of calling parameters which are control
parameters. The next three are based on whether a rule is violated.
They can all be measured at design and implementation..

(4) Input data controlled by calling module.
See (3) above.

(5) Output data provided to calling module.
See (3) above.

C-51

Criteria: Modularity

(6) Control returned to calling module.
See (3) above.

(7) Modules do not share temporary storage.
This is a binary measure, (1) if modules do not share temporary storage

and (0) if they do. It emphasizes the loss of module independence if
temporary storage is shared between modules.

(8) Each module represents one function.
Ideally, each module performs only one function.

Metric: MO.3 Modular Design Measure.
The metr-c is the sum of the scores given to the following elements
divided by the number of applicable elements.

(1) Processes/f unctions/modules have loose coupling.

In achieving a highly modular design it is essential to minimize the
relationships among modules. The goal is to design modules with low

coupling. The scale of coupling from worst to best is: 1) content
coupling, 2) common coupling, 3) external coupling, 4) control coupling,
5) stamp coupling, and 6) data coupling.

1) Content coupling -one module makes reference to the contents of
another module.

2) Common coupling -modules reference a shared global data struc-
ture.

3) External coupling -modules reference the same externally declared
symbol.

4) Control coupling -one module passes elements of control as argu-
ments to another module.

5) Stamp coupling - two modules reference the same data structure,
which is not global.

6) Data coupling - one module calls another and the modules are not
coupled as defined above (in I through 5).

C-52

Criteria: Modularity

(2) Processes/functions/modules have high cohesion.

In achieving a highly modular design it is essential to maximize the

relationships among the elements of each module. The following are

relative values for seven types of cohesion:

COHESION TYPE VALUE

7) Functional 1.0

6) Informational 0.7

5) Communicational 0.5
4) Procedural 0.3

3) Classical 0.1

2) Logical 0.1

1) Coincidental 0.0

The fol owing are descriptions of the seven types of cohesion.

1) Coincidental

• No meaningful relationships among the elements of a module.

. Difficult to describe the module's function(s). F'
2) Logical

Module performs (at each invocation) one of a class of related

functions (e.g., "edit all data").
Module performs more than one function.

3) Classical
* Module performs one of a class of functions that are related in

time (Program procedure).

• Module performs more than one function.

4) Procedural

• Module performs more than one function, where the functions

are related with respect to the procedure of the problem

(Problem procedure).

5) Communicational

Module has procedural strength; in addition, all of the elements
"communicate" with one other (e.g., reference same data or

C-53

S... .. • .'-- -- • •-- .• -- " ".• l - - - - . - -' . L-'.. .. ' • . .

Criteria: Modularity

pass data among themselves).
All functions use the same data.

6) Informational
. Module performs multiple functions where the~ functions (entry

points in the module) deal with a single data structure.
* Physical packaging together of two or more modules having func-

tional strength.I * All functions use the same data.
7) FunctionalI * All module elements are related to the performance of a single

f unction.

Reference:I
For a more detailed explanation of the terms used to describe cohesion and

coupling see "Reliable Software Through Composite Design", Myers,
G lenf ord J.

C-54

Criteriat Operability

Metric: OP. L Operability Checklist.

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) All steps of operation described (normal and alternative flows).

This binary measure identifies whether the operating characteristics have

been described in the requirements specification, and if this description

has been transferred into an implementable description of the operation

(usually in an operator's manual). The description of the operation

should cover the normal sequential steps and all alternative steps.

(2) All error conditions and responses appropriately described to operator.
The requirement for this capability must appear in the requirements

specification, must be considered during design, and coded during imple-

mentation. Error conditions must be clearly identified by the system. I-

Legal responses for all conditions are To be either documented and/or

prompted by the system. This is a binary measure to trace the evolution

and implementation of these capabilities.
: il

(3) Provisions for operator to interrupt, obtain operational status, save,

modify, and continue processing.
The capabilitie-s provided to the operator must be considered durirng the

requircment s phase and then designed and implemented. Examples of

operator capabilities include halt/resume and check pointing. This is a
binary measure to trace the evolution of these capabilities.

(4) Number of operator actions reasonable (requires execution).

The number of operator errors can be related directly to the number of

actions required during a time period. This measure is based on the

amount of time spent requiring manual ooerator actions divided by the

total time required for the job.

(5) Job set up and tear down .",cedures described.

The specific tasks involved in setting up a job and completing it are to

C-55

Criteria: Operability

be described. This is usually documented during the implementation

phase when the final version of the system is fixed. This is a binary

measure of the existence of that description.

(6) Hard copy log of interactions maintained.

This is a capability that must be planned for in design and coded during

implementation. It assists in correcting operational errors, improving

efficiency of operation, etc. This binary measure identifies whether it is

considered in the design and imnlementation phases (1) or not (0).

(7) Operator messages consistent and responses standard.

This is a binary measure applied during design and implementation to

insure that the interactions between the operator and the system are

simple and consistent. Operator responses such as YES, NO, GO, STOP,

are concise, simple, and can be consistently used throughout a system.

Lengthy, differently formatted responses not only provide difficulty to

the operator but also cequire complex error checking routines.

(8) Access violations and responses appropriately described.

Appropriate decriptions and a log of access violations will enable the

operator to clearly assess the system status.

(9) Capability for operator to obtain network resource status.

This capability is essential for managing individual nodes resources and

for providing services which are dependent on other nodes.

(10) Capability to select different nodes for different types of processing or

for different types of information retrieval.

This provision expands the virtual capability and versatility of the node.

C-56

Criteria: Reconfigurability

Metric: RE. I Restructure Checklist.

The metric is the sum of the scores given to the following elements

divided by the number of apgiicable elements.

(1) Configuration of communication links is such that failure of one

node/link will not disable communication among other nodes.

Alternate communication paths ensure the ability to reconfigure the

network in the event of a single point failure.

(2) Specific requirements for maintaining data base integrity under anoma-

lous conditions.

In a network where information is distributed among different nodes, and

sometimes duplicated at different nodes, it is essential to maintain the

integrity of the total database when conditions are non-normal.

(3) Provisionis for maintaining database integrity under anomalous conditions.

A scheme is required for implementing the requirements referenced in

"(2) during the Preliminary Design phase.

(4) Node can rejoin the network when it has been recovered.

It is desirable to have a node rejoin the network without interrupting

basic or critical network functions.

(5) Data replicated at two or more distinct nodes.

Information, especially critical data, should be replicated within the

-ystem to insure the ability to reconfigure.

C-57

-L---~.

Criteria: Self Descriptiveness

Mexric: SD.1 Quantity of Comments.
The metric is the number of comment lines divided by the total number

of lines in each module. Blank lines are not counted. The average value

is computed for the system.ievel metric.

(1) Number of lines of source code and non-blank comments.

Metric: SD.2 Effectiveness of Comments Measure.
The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Modules have standard formatted prologue comments.

This information is extremely valuable to new personnel who have to

work with the software after development, performing maintenance,

testing, changes, etc. The measure at the system level is based on the

number ofI modules which do not comply with a standard format or do
not provide complete information.

(2) Comments set off from code in uniform manner.

Blank lines, bordering asterisks, specific card columns are some of the

techniques utilized to aid in the identification of comments. The meas-

ure is based, on the number of modules which do not follow the conven-

tions established for setting off the comments.

(3) All transfers of control and destinations commented,

This form of comment aids in the understanding and ability to follow the

logic of the module. The measure is based on the number of modules
which do not comply.

(4) All machine dependent code commented.

Ccmments associated with machine dependent code are important not

only to explain what is being done but also serve~s to identify that

portion of the module as machine dependent. The metric is based on thi

C-58

Criteria: Self Descriptiveness

number of modules which do not have the machine dependent code

commented.

(5) All non-standard HOL statements commented.

See explanation for (4) above.

(6) Attributes of all declared variables commented.

The usage, properties, units, etc., of variables are to be explained in

comments. The measure is based on the number of modules which do

not follow this practice.

(7) Comments do not just repeat operation described in language.

Comments are to describe why, not what. A comment, incremenr.t. A by

1, for the statement A=A+i provides no new information. A comment,

increment the table look-up index, is more valuable for understanding

the logic of the module. The measure is based on the number of

modules in which comments do not explain the why's.

Metric: SD.3 Descriptiveness of Language Measure.
The metric is the sum of the scores of the fallowing applicable elements

divided by the number of applicable elements.

(W) High order language used.

An HOL is much more self-descriptive than assembly language. The

measure is based on the number of modules which are implemented, in

whole or part, in assembly or machine language.

(2) Variable names (mnemonics) descrip~tive of physical or functional pro-

perty represented.
While the metric appears very subjective, it is quite easy to identify if

variable names have been chosen with self-descriptiveness in mind.

C-59

Criteria: Self Descriptiveness

Three variable names such as NAME, POSIT, SALRY are far better and

more easily recognized as better than Al, A2, A3. The measure is based

F on the number of modules which do not utilize descriptive names.

(3) Source code logically blocked and indented.
Techniques such as blocking, paragraphing, indenting for specific con-

structs are well established and are to be followed uniformly with a

system. This measure is based on the number of modules which do not

comoly with a uniform technique.

(4) One statement per line.

The use of continuation statements and multiple statements per line

causes difficulty in reading the code. The measure is the number of

continuations plus the number of multiple statement lines divided by the

total number of lines for each module and then averaged over all of the

modules in the system.

(5) Standard format for organization of modules.

All modules should be- similar in structure to ease understanding.

(6) No language keywords used ds names.

Names should be unique and not include language keywords.

C-60

Criteria: sim-iclt~y

Metric: SLIl Design Structureý 14easure.
The metric is the sum of the scores of the applicable elements divided

by the number of applicable elements.

(1) Design organized in top down fashion.

A hierarchy chart of system modules is usually available or easy to

construct from design documentation. It should reflect the acceptedI
notion of top down design. The system is organized in a hierarchical

tree structure, each level of the tree represents lower levels of detail

descriptions of the processing.

(2) Module independence.

The processing done within a module is not to be dependent on the

source of input or the destination of the output. This rule can be

applied to the module description during design and the coded module

during implementation. The measure for this element is based on the

number of modules which do not comply with this rule.

(3) Module processing not dependent on prior processing.

The proessing done within a module is not to be dependent upon know-

ledge or results of prior processing, e.g., the first time through the

module, the nth time through, etc. This rule is applied as above at

design and implementation.

(4) Each module djescription includes input, output, processing, limitations.

Documentation which describes the input, output, processing, and limita-

tions for each module is to be developed during design and available

during implementation. The measure for this element is based on the

number of modules which do not have this information documented.

C-.61

Criteriat Simplicity

(5) Each module has single entrance, single exit.

Determination of the number of modules that violate this rule at design
and implementation can be made and is the basis for the metric.

(6) Size of data base.

The size of the data base in terms of the number of unique data items
contained in the data base relates to the design structure of the soft-

ware system. A data item is a unique data element for example an

individual data entry or data field.

(7) Compartmentalization of data baseI
The structure of the data base also is represented by its modularization

or how it is decomposed. The size determined in (6) above divided by
the number of data sets provided this measure. A data set corresponds [
to the first level of decomposition of a data base, e.g., a set in a
CODASYL data base, a record in a file system, a COMMON in

FORTRAN, or a Data Block in a COMPOOL, system

(8) Programming standard developed.

A standard for programming practices will enhance uniformity in module

development.

(9) Module descriptions include identification of module interfaces.
Both internal and external interfaces need to be identified.

Metric: 51.2 Structured Language or Preprocessor.

\I) Structured language or preprocessor used.

The use of a structured language or a preprocessor simplifies the pro-

gramming task.

C-62

Criteria: Simplicity

FMetric: S1.3 Data and Control Flow Complexity Measure

(I) Complexity measure.
(a) Number of decision points

(b) Number of branching points
The metric -neasure is the reciprocal of the number branching andi
decision points.

Metric: 51.4 Coding Simplicity Measure.
The metric at the system level is an averaged quantity of all the module

measures for the system. The module measure is the sum of the scores

of the following applicable elements divided by the number of applicable
elements.

(1) Module flow top to bottom.
This is a binary measure of the logic flow of a module. If it flows top
to bottom, it is given a value of 1, if not a 0.

(2) Negative Boolean or complicated compound Boolean expressions used.

Compound expressions involving two or more Boolean operators and neg-
ation can often be avoided. These types of expressions add to the
complexity of the module. The measure is based on the number of these
complicated expressions per executable statement in the module.

(3) Jumps in and out of loops.

Loops within a module should have one entrance and one exit. This
measure is based on the number of loops which comply with this rule
divided by the total number of loops.

(4) Loop index modified.
Modification of a loop index not only complicates the logic of a module
but causes severe problems while debugging. This measure is based on
the number of loop indices which are modified divided by the totz I
number of loops.

C-63

Criteria: Simplicity

(5) Module is not self-modifying.
If a module has the capability to modify its processing logic it becomes
very difficult to recognize what state it is in wnien an error occurs. In

addition, static analysis of the logic is more difficult. This neasure
emphasizes the added complexity of self-modifying modules.

(6) Number of statement labels.
This measure is based on the premise hhat as more statement laLbels are
added to a module the more complex it becomes to understand.

(7) Nesting level.
The greater the nesting level of decisions or loops within a module, !h!

greater the complexity. The measure is the reciprocal of the maximum i
nesting level.

(8) Number of branches.,
The more paths or branches that are present in a module, the greater

the complexity. This measure is based on the number of decision
statements per executable statements.

(9) Statement simplicity level.
This measure is based on the number of declarative and data manipula-
tion statements per executable statement.

(10) Variable mix in a module.
From a simplicity viewpoint, local variables are far better than global
variables. This measure is the ratio of internal (local) variables to tota!
(internal (local) plus external (global)) variables within a module.

(11) Variab~e density.

The more variables used in a module the greater the complexity of that
module. This measure is based on the number of variable uses in a
module divided by the maximum possible uses.

C -64

Criteria: simplicity

(12) Single use of variables.
Each variable should have a singular use.

(13) Code written according to programming standard.
Uniform module construction and coding con'2entions aid in minimizing

complexity.

(14) Macros an'd subroutines used to avoid repeated arid redundant code.
Use of macros and subroutines is yet another way of simplifying code.

C-65

Criteriat SWecif !city

Metric% SPAl Scope of Funiction Measure.
The metric is the sum of the scores given to the following ele~ments
divided by the number of applicable elements.

(1) Input density.
The fewer the input parameters, the more likely the module is singular
in function.

(2) Output density.
The smaller the ratio of output parameters to output values, the more
likely the module is singular in function.

(3) Same function cannot be accomplished by multiple variant forms.
If the same function could be accomplished by multiple different mod-
ules, the module would not be singular in function.

C-66

Criteria: System Accessibility

Metric: SA. 1 Access Control Checklist.
The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) User 1/0 access controls provided.
Requirements for user access control must be identified during thei ~requirements phase. Provisions for identificatiorn and password checking
must be designed and implemented to comply with the requirements.
This binary measuire identifies whether attention has been placed on this
area.

(2) Data base access controls provided.
This binary measure identifies whether requirements for data base con-
trols have been specified and designed and the capabilities implemented.
Examples of data base access controls are authorization tables and
privacy locks.

(3) Memory protection across tasks provided.

Simiiar to (1) and (2) above, this measure identifies the progression from

a requirements statement to implementation of memory protection
across tasks. Examples of this type of protection, often timeýs provided
to some degree by the operating .system, are preventing tasks from
invoking other tasks, tasks from accessing system registers, and the use

of privileged commands.

(4) Network access controls provided.

Similar to the above, this metric identifies the need for access control
for the network to protect both the operation of the network and
individual nodes.

C-67

Criteria: System Accessibility

Metric: SA.2 Access Audit Checklist.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Provisions for recording and reporting access to a node.

A statement of the requirement for this type capability must exist in

the requirements specification. It is to be considered in the design

specification, and coded during implementation. Examples of the provi-

sions which might be considered would be the recording of terminal and

processor linkage, data file accesses, and jobs run by user identificaticon

and time,

(2) Provisions for immediate indication of access violations.

In addition to (1) above, access audit capabilities required might include

not only recording accesses but immediate identification of unauthorized

accesseS, whether intentional or not.

t1 I
4 -64

C-69

Criteria: System Clarity

Metric: Sc. I Interflace Complexity.
A software program should reduce the interface complexity and promote
the systemn clarity. The metric is the sum of the scores of the following
applicable elements divided by the number o'f applicable elements.

(1) Number of data items (variable names) used to specify the interface.
The measure is based on mne number of data items specified by the
interface.

(2) Number of data items passed implicitly across interface via commonI global data without adequate comments.
The measure is based on the number of data items which are passed
implicitly across the interface and without adequate comnments explana-
tion.

(3) Number of nesting levels in interface. 1
The greater the nesting level of the interface, the greater the interface
complexity. The measure is the reciprocal of the number of nesting
ievels.

(4) Number of interface data items with negative qualification.
The procedures returning a "TRUE" upon a failure tend to increase the
interf ace complexity.

(5) Number of data items passed across module interface via module argu-
ments and values or via common global data.
The more data items passed across the interface the more complex the
interface. The measure is the reciprocal of the number of data items
passed across the interface.

C-69

Criteria: System Clarity

(6) Module interfaces established by common control blocks or common data

blocks or common overlay region of memory or common 1/O devices or

global vaviable names and with adequate comments.

The interface established by common control blocks or common global

data is more complex than the interface established by parameter lists.

This is a binary measure.

(7) Modules do not modify other modules.

The degree of coupling is higher for modules that modify other modules.

The measure is based on the number of modules which do not comply

with the rule.

Metric: SC.2 Program Flow Complexity.

Software programs shiould reduce the program flow complexity and pro- I
mote the system clarity. Tne metric is the sum of the scores f the

following applicable elements di.vided by the number of applicable ele-

ments.

(1) Number of possible unique excution paths.

The measure is the reciprocal of the number of unique execution paths. V

(2) Number of IF statements.

The measure is the reciprocal of the number of IF statements.

(3) Number of function CALLs in each module.

The more function CALLs are present in a module, the greater the

complexity. The measure is the reciprocal of the number of function [
CALLs.

(4) Number of control variables used to direct execution path selection.

The measure is the reciprocal of the number of control 'ariables.

C-70

Criteria: Sstem Cla rity

(5) Number -f 'DO groups.
The measure is the inverse of the number of DO groups.

(6) Each module has code comments that indicate called-by modules and

calling modules.

The rnezsure is based on the number of modules which do not comply.

Metric: SC.3 tAppl~cation Functional Complexity.

Software program should reduce the application functional complexity

and promote the system clarity. The metric is the sum of the scores of
the following applicable elements divided by the number of applicable

elements.

(1) Separate input/output from computational functions.
The measure is based on the number of modules that violate this rule.

(2) Modules do not share temporary storage locations.

The measure is based on the number of modules that violate this rule.

(3) Separate database-management routines and storage-marnagem-!nt rou-

tines&
The measure is based on the number of modules that violate this rule.

(4) Common function is not distributed among different modules.
Common functions distributed among several different modules will tend

to obscure the program logic in each module. This is a binary measure.

(5) Module is not made to do too many (related but different) functions.

Too many related but different functions in a module will tend to
obscure the logic with tests to distinguish among the various functions.
This is a binary measure.

C-71

......................................c

Criteria: System Clarity

Metric: SC.4 Communication Complexity.

Software programs should reduce the communication complexity and

promote the system clarity. The metric is the sum of the following

applicable elements divided by the number of applicable elements.

(1) Number of formal parameters each routine.

The measure is the number of parameters divided by the number of

global variables.

(2) Common global variable used each module.

The measure is the reciprocal of the number of common global variables

used.

(3) Routine-Global-Routine data binding.

The measure is based on the number of global variables which are

modified by one routine and referenced to other routines.

(4) Module connections are established by referring to other modules by

their functional names, not internal elements of other modules.

Modules whose connections are established by referring to other modules

by their functional names are more loosely coupled than are modules

whose connections refer to internal elements of other modules. The

measure is based on the number of modules which do not comply.

(5) Ccmmunication between modules is by passing data, not by passing

control elements.

The measure is based on the number of modules which do not comply.

Metric: SC.5 Structure C!arity-

To remove the program impurities, to improve the 9tructure clarity, and

make software easier to understand. The metric is a measure reflecting

this improvement and is the sum of the following applicable elements

divided by the number of applicable elements.

C-72

Criteria: System Clarity

(1) Do not compute the same value more than once.

Whenever a specific combination of terms must be used more than once

a new name should be assigned to that combination and that new name

should be utilizecd in the subsequent occurrences of that term. The

binary metric measure reflects this readability improvement.

(2) Do not insert a statement which never needs to be executed.

To remove the unwarranted assignment statement and improve the com-

prehensibili.Yt of program. This is a binary measure to reflect this

improvement.

(3) Maintain a constant meaning for each variable.

Modules should not !se the same variable to represent different types of

values in different portions c!. program to improve the understandability.

"f i is a tinary measure to reflect this improvement.

(4) Elimninate unneces.•ary intermediate variables.

See explanation Thr (2) abo~e.

C7

L C-73

Criteria: System Compatibility

Metric- SY.l Communication Compatibility Checklist.

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Same I/O transmission rates in both systems.

If the two systems have incompatible transmission rates, extra effort

will be required to avoid buffer overruns, data overruns, and lost data.

Thus, the effort to interoperate in this case is increased.

(2) Same communication protocol in both systems.

Compatible communication protocols assures the systems can begin to
converse. If the protocols are incompatible, then additional work will be

required so that the systems can initiate mutua! communication.

(3) Same message content in both systems.

If the content of the messages are not the same, that is, the same units,
the same variable, the same reference points, and the same reference

structure, then the message will have a meaning to the receiver differ-
ent from that intended by the sender.

(4) Same message structure and sequence in both systems.
Even though the protocols may be compatible, and the data of mutual

format and type, interoperation may be impossible if the message struc-
ture and message sequences are not compatible.

Metric: SY.2 Data Compatibility Checklist.

The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Is data in both systems in the same format (ASCII, EBCDIC,...)

The format of the data transmitted between the systems should be

identical, otherwise, additional effort must be spent converting the

C-74

Criteria: Systei Compatibility

format in one system; or a hardware or software reformatter must be
designed and implemented.

(2) Same data base structure in both systems.

If the data base structures are compatible, then consistent accessing and

indexing interpretations are possible, lessening the chance of incom-

patibilities which would increase the effort to achieve Interoperation.

(3) Same data base access techniques in both systems.
This metric component is related to (2), but it is unique in that it

assures that the accessing variables will be as similar as possible
between the systems, reducing the conversion necessary between sys-

tems.

Metric: SY.3 Hardware Compatibility Checklist.

The metric is the sum of the scores given to the following elements
divided by the number of applicable elements.

(1) Same word length in both systems.

If both systems use the same standard word length, then problems of

differing accuracy and conversion are removed.

(2) Same interrupt structure in both systems.
If both systems use computers with the same interrupt structure, it is

likely that they will be mutually compatible in their interfaces with the
real world of sensors, etc.

(3) Same instruction set in both systems.

If both syst.ems use computers with identical instruction sets, then they

truly "talk the same language." This compatibility should contribute to
reduced effort to achieve interoperation between the two systems.

C-75

Criteria: System Compatibility

Metric: SY.4 Software Compatibility Checklist.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Same source language in both systems.
If the source language used in the two systems is the same, then many

compatibilities are already provided; if not, the effort to interoperate

will increase due to resolution of language feature discrepancies.

(2) Same operating system in both systems.

Identical operating systems will provide assurance of consistent features

and methods of operation. Thus, the effort required to interoperate

should be reduced.

(3) Same support software in both systems.

If identical support software is used for the systems that must inter-

operate, it is likely that both may be constructed in much the same way.

The communication necessary to service both systems will be simplified.

Finally, duplicate support software centers may provide greater reli-

ability, or, alternatively, the possibility for cost reductions.

Metric: SY.5 Documentation for Other Systems.

(1) Is the other system documentation available in a form that is up-to-date,

complete, and clearly organized and written?

Many questions about the other system will arise in achieving interoper-

ability, and the most efficient and practical way of answering them is

the availability of documentation on the other system. For the docu-

mentation to be useful, however, it must meet certain requirements. It

must reflect the other system as it currently exists, or as it will exist at

the time of interoperation; so the documentation must be up-to-date.

The documentation must also be complete, et least to the extent neces-

sary to answer all questions relating to interoperability. But, even

C-76

Criteria: System Compatibility

the most complete and up-to-date documents will be relatively useless if

they are not clearly organized and clearly written. The reader must be

able to find his way efficiently to the answer he needs, and when found,

the axnswer must be stated clearly. Otherwise, the time lost to locate

and understand the information will be excessive and it is likely the

reader will make an assumption for his purposes. Once again, the result

Sis likely to be additional interoperability problem s.

C-77

Criteria: Traceability

Metric: TPA. Cross Reference.

(1) Cross reference relating functions/modules to requirements.
During design, the identification of which itemized requirements are
satisfied in the design of a module are documented. A traceability
matrix is an example of how this can be done. During implementation,
which itemized requirements are being satisfied by the module imple-
mentation are to be identified. Some form of automated notation,
prologue comments or imbeddtd comments, is used to provide this cross
reference. The binary metric is the identification of a tracing of

requirements into design and into code.I

C-78

CL-~erd: Trair)1151

Metric: TN.l1 Training Checklist.
The metric is the sum of th~e scores of the following applicable elements
divided by the number of applicable elements.

() Lesson plans/training material developed for operators, end users, main-
tainers.
This is a binary measure of whether this type documentation is provided
during the impiementation phase.

(2) Realistic simulated exercises provided.
This is a binary measure of whether exercises, which represent the
operational environment, are developed during the implementation phase
for use in training.

(3) Sufficient 'help' and diagnostic information available on-line.
This is a binary measure of whether the capability to aid the operator in
familiarization with the system has been designed and built into the
system. Provision of a list of legal commands or a list of the sequential

steps involved in a process are examples.

(4) Selectable levels of aid and guidance for users of different degrees of
expertise.

This is a binary measure of multi-level capability for user familiariza-
tion.

C-79

Criteria: Virtuality

Metric: VRAl System/Data Independence Checklist.
This metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Specific requirements for virtual storage structure.

Requiring a virtual storage structure is the key to providing the user

with a virtual system.

(2) Provisions for virtual storage structure (user can obtain data without

knowing identity/location of storage device).

During Preliminary Design, a scheme is required to implement the

requirements referenced in (1). The scheme may be elaborate if data is

widely distributed within the network.

(3) Users can manipulate data as if it were not replicated elsewhere in the

system.
This measure refers to potential configuration management problems in a

network where the same data is replicated at different nodes.

(4) Each user can utilize the system as though it were dedicated to that

user.

Presenting each user with a system which is virtually dedicated to that

user maximizes the capabilities available to the user.

(5) User is presented with a complete logical system withou! regard to

physical topology.

Lifting the requirement for the user to know the physical topology of

the system simplifies the user's task with respect to the system.

c-80

Criteria: Visibility

Metric:. VS.1 Module Testing Measure.
The system level metric is an average of all module measures. The
module measure is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Path coverage.
Plans for testing the various paths within a module should be made
during design and test cases actually developed during implementation.
This measure identifies the number of paths planned to be tested divided
by the total number of paths.

(2) Input parameters boundary tested.
The other aspect of module testing involves testing the input ranges to
the module. This is done by exercising the module at the various
boundary values of the input parameters. Plans to do this must be
specified during design and coded during implementation. The measure
is the number of parameters to be boundary tested divided by the total

number of parameters.

Metric: VS.2 Integration Testing Measure.

The metric is the sum of the scores given to thý. following elements
divided by the number of applicable elements.

(1) Module interfaces tested.
One aspect of integration testing is the testing of all module- to -module
interfaces. Plans to accomplish this testing are prepared during designA

and the tests are developed during implem~entation. The measure is
based on the number of interfaces to be tested divided by the toia.l
number of interfaces.

C-81

Criteria. Visibility

(2) Performance requirements (timing and storage) coverage.

The second aspect of integration testing involves checking for corn-

pliance at the module and subsystem level with the performance require-

ments. This testing is planned during design and the tests are developed

during implementation. The measure is the number of performance

requirements to be tested divided by the total number of performance

requirements.

Metric: VS.3 System Testing Measure.

The metric is the sum of the scores given to the following elements

divided by the number of applicable elements.

(1) Module coverage (for all test scenarios).

One aspect of system testing which can be measured as early as the

design phase is the equivalent to path coverage at the module level. For

all system test scenarios planned, the percent of all of the modules to

be exercised is important.

(2) Identification of test inputs and outputs in summary form.

The results of tests and the manner in which these results are displayed

are very important to the effectiveness of testing. This is especially

true during syster,' testing because of the potentially large volume of

input and output daa. This binary measure simply identifies if the

capability exists to disptav test inputs and outputs in a summary fashion.

The measure can be applied to the plans and specifications in the design

phase and the development of this capability during implementation.

C-82

M ISSION
Of

Rome Air Development Center
RAVC ptam and exe.cwte ke~eat'rch, devetopment, ~tat and
.6ete~c.ted acquicAiton pugu'tm~ in su~ppet't o6 Command, ContAu)t
Commn11c~Za~tion and In~tettigence~ (C31) actZvtieu. Technica2
and engineeting .riuppot.t wixthin a~tea.6 06 technico.t compete~nce
Z&~ p'Lovided to ESP) Puguman O66icez (POz3) and othcvt! ESV
e&tem~t. The~ pzincipoe itechnicat m.iL6s5on o~as.ca'L
communica.tionz, ctec~t~omagnetic guidaznce and conttoZ-, *5ut-
veLýtMnce o6 g4ouitd and aeu~poacc obec~tz, inttettiqcnce dao.t
cotec~tion and handting, in~orma~tion'ay~tem *tochn~ogoy,
.conosphe.Aic pOpdgatcion, 4otid s~tate Accncce., mniciowave
phy4ic.6 and etettoniZc te dbiLtity, ma'ittainabiU~ty and
conripatibiCtiy.

